
Kandinsky Conformal Prediction: Efficient Calibration of Image Segmentation
Algorithms

Supplementary Material

Figure 10. The computed k-means and GenAnn annuli clusters for
the Medical Decathlon dataset with a small calibration set.

Figure 11. Subtraction image of coverage errors per pixel for
imagewise vs. GenAnn calibration on the Decathlon-S dataset. Red
indicates lower coverage error for the former, and blue indicates
lower coverage error for the latter. Especially near the boundaries,
the coverage error decreases for the GenAnn calibration.

6. Additional Cluster Plots

In Fig. 10 we provide an additional example of k-means clus-
ters and GenAnn clusters, for the Decathlon-S experiment.

7. Details Genetic Algorithm
Let us start by providing a short insight into the workings of
this approach. A candidate solution in a generation t, x(t)

i ,
will consist of a finite set of real numbers, the set of (x, y)
coordinates for a center, along with a set of radii for annuli
clusters. The fitness function we utilize is the evaluation
of the “internal” distances in each cluster. Each pixel p in
a cluster of pixels will have an associated non-conformity
curve np, which arises during the calibration procedure. The
internal distance IC for a cluster C of pixels is then defined
as

IC =
X

p,q2C

d(np, nq) , (9)

where d is some metric between the two non-conformity
curves. We measure the distance between non-conformity
scores by comparing the values of both curves at a chosen
set of quantiles. Let us denote D(t)

i as the set of clusters of
pixels parameterized by a candidate solution, then the fitness
function becomes

F
⇣
x(t)
i

⌘
:=

X

C2D(t)
i

IC . (10)

We detail the further specifics of the mutation, crossover,
and replacement in the supplementary material, Sec. 7. The
main advantage of this method is that provided you can find
a parametrization of the clusters you wish to find, it can be
utilized. We provide an overview of the algorithm process
in Algorithm 1.

Algorithm 1 Differential Evolution Optimization
1: Initialize population with random candidate solutions

P (0) = {x(0)
1 , x(0)

2 , ..., x(0)
N }

2: Evaluate the fitness f (0)
i = F (x(0)

i) for each individual
3: for each generation t = 1, 2, ..., T do
4: Apply mutation P (t)

mut = M(P (t�1))

5: Create offspring via crossover P (t)
cross = C(P (t)

mut)

6: Replace population P (t+1) = R(P (t�1), P (t)
cross)

7: Re-evaluate the fitness for the new population
8: Check for termination condition
9: end for

10: Output the best solution x⇤ = argmin
x(T⇤)
i

f (T⇤)
i with

T ⇤ the last generation

For the genetic algorithm approach of finding annuli in
the MS-COCO case, we have used the range [�20, 20] as

bounds for the center x and y coordinates, and [0, 150] for
the two innermost radii and [0, 300] for the outermost (as it is
allowed to lie outside of the image if necessary). In the case
of the medical decathlon dataset, the radii, the bounds of
the center coordinates were [�60, 60] and the inner radii up
to 200 and outermost 400. These choices were made based
on the image sizes. We did not find that it was necessary to
add any ‘repulsion’ term in the objective function between
different radii, as it is generally a more favorable solution to
have separate annuli for lower objective function values.
For the mutation and crossover, we start by selecting three
random individuals from the population, a, b, and C. The
mutation will create a new, mutated individual by

xmut = a+ CM (b� c) , (11)

where CM denotes the mutation factor, chosen to be 0.8 in
our experiments. The operations in the mutation are point-
wise on the individuals. Subsequently, a crossover will be
performed between the candidate solution and the mutated
one. Suppose each candidate solution is of length n, i.e.,
it has n parameters specifying clusters. We first define a
crossover probability pC = 0.7 and then uniformly sample
n random numbers that lie in [0, 1). Whenever the random
number exceeds pC , we accept the mutated parameter. After
the mutation and crossover, we end up with a new candidate
solution x̃, which replaces the original candidate solution x
only if the fitness is lower.

We note that the computation of the ‘internal’ distance,
i.e., the distance between the quantiles of the non-conformity
curves, is very amenable to large matrix operations. There-
fore, we have implemented it using PYTORCH, allowing for
a batched, GPU-compatible computation. All our computa-
tions were performed on an Nvidia A6000 GPU but can be
on a CPU as well.

8. Details Fourier Concentric Clustering
In this section we explain how to construct a concentric
decomposition of Rn := [0, n1 � 1]⇥ [0, n2 � 1] on which
the variances of a user-prescribed quantity J : Rn ! Rp

are minimized. Here n := (n1, n2) 2 N2 corresponds to
the measurements of the domain of the underlying image of
interest. Specifically, we explain how to construct a sequence
of simply connected nested subsets V0 ⇢ . . . ⇢ Vm�1 ⇢ Rn

such that
Pm

l=0 EAl

⇣
kJ � µlk2

⌘
is minimal, where

Al :=

8
><

>:

V0, l = 0,

Vl \ Vl�1, 1  l  m� 1,

Rn \ Vm�1, l = m.

Here m 2 N is the number of sets in the filtration (Vl)
m�1
l=0 ,

k · k denotes the standard Euclidean norm on Rp and µl =
EAl(J) 2 Rp is the mean of J on Al. We require that each
set Vl has a smooth boundary and refer to Al as a domain.

8.1. Explicit representation of the filtration
We start by constructing an explicit representation of each
Al amenable to numerical computations. First, define a new
(Cartesian) coordinate system in which the midpoint p =
(p1, p2) of Rn corresponds to the origin. Next, parameterize
A0 by assuming its boundary @A0 is a polar curve, i.e., in
polar coordinates we have

A0 = {(r, ✓) : 0  r  r0(✓), ✓ 2 [0, 2⇡]} ,

where r0 : [0, 2⇡] ! (0,1) is a continuously differentiable
2⇡-periodic map. Similarly, we assume rl�1, rl : [0, 2⇡] !
(0,1) are polar curves parameterizing the boundaries of
Vl�1 and Vl, respectively, and hence

Al = {(r, ✓) : rl�1(✓)  r  rl(✓), ✓ 2 [0, 2⇡]} ,
1  l  m� 1.

For the final domain Am, the “outer” boundary @Rn is fixed
and no explicit parameterization is required:

Am = {(r, ✓) : r � rm�1(✓), 0  p1 + r cos ✓  n1 � 1,

0  p2 + r sin ✓  n2 � 1, ✓ 2 [0, 2⇡]} .

The domains (Al)ml=0 are fully determined by the polar
curves (rl)m�1

l=0 . Since these mappings are smooth and 2⇡-
periodic, they admit uniformly convergent Fourier series.
For this reason, we have chosen to represent the polar curves
using finite Fourier expansions:

rl(✓) :=
X

|k|K�1

alke
ik✓, 0  l  m� 1,

where (alk)
K�1
k=1�K 2 C2K�1 are the Fourier coefficients of

rl. Here K 2 N is a user-prescribed hyperparameter which
we shall refer to as the order of the Fourier series. We only
store the Fourier coefficients al := (alk)

K�1
k=0 2 CK , since

rl is real-valued.

Remark 8.1. In practice, we actually define

rl(✓) :=

0

@
X

|k|K�1

alke
ik✓

1

A
2

, 0  l  m� 1,

to ensure that the resulting radii are positive. For the sake of
presentation, however, we shall ignore this minor detail in
the following sections.

8.2. Numerical evaluation of integrals

To compute the variances EAl

⇣
kJ � µlk2

⌘
, as (differen-

tiable) functions of a := (a0, . . . , am�1) 2 CmK , we need
to numerically evaluate integrals over the domains Al. We

use a combination of Legendre and Fourier quadrature to
accomplish this. In this section we explain in detail how to
numerically integrate an arbitrary continuously differentiable
map f : Rn ! R over each domain.

For the innermost domain A0, we have
ˆ
A0

f(x) dx =

ˆ 2⇡

0

ˆ r0(✓)

0
f (p1 + r cos ✓, p2 + r sin ✓) r dr d✓ .

Notice that the inner integral is a 2⇡-periodic function of
✓ and continuously differentiable. Therefore, it admits a
unique Fourier expansion. In particular, if (c0k)k2Z are the
corresponding Fourier coefficients, then

ˆ
A0

f(x) dx = 2⇡c00. (12)

Consequently, to approximate the desired integral, it suffices
to approximate the zeroth Fourier coefficient of

✓
I07!
ˆ r0(✓)

0
f (p1 + r cos ✓, p2 + r sin ✓) r dr . (13)

For this purpose, we first sample (13) on an equidistributed
grid of [0, 2⇡] of size KI 2 N. To approximate the integrals
in (13) at fixed angles, we use Gaussian quadrature of order
KG 2 N. Next, we use the (inverse) Fast Fourier Transform
(FFT) to approximate (c0l)

KI�1
l=0 , and in turn the desired

integral using (12).
The integrals for 1  l  m � 1 are approximated in a

similar fashion. More precisely, for 1  l  m� 1, we have

ˆ
Al

f(x) dx =

ˆ 2⇡

0

ˆ rl(✓)

rl�1(✓)
f (p1 + r cos ✓, p2 + r sin ✓) r dr d✓ .

As before, we first note that

✓
Il7!
ˆ 2⇡

0

ˆ rl(✓)

rl�1(✓)
f (p1 + r cos ✓, p2 + r sin ✓) r dr d✓

is a continuously differentiable 2⇡-periodic function. Hence
it admits a unique Fourier expansion. Therefore, if (clk)k2Z
are the associated Fourier coefficients, then

ˆ
Al

f(x) dx = 2⇡cl0, 1  l  m� 1,

as before, and we approximate the right-hand side in exactly
the same way.

Finally, we approximate the integral over Am using a
combination of two-dimensional quadrature and the compu-
tations above. More precisely, first observe that

ˆ
Am

f(x) dx =

ˆ
Rn

f(x) dx�
ˆ
Vm�1

f(x) dx.

We approximate the first integral using 2-dimensional Gaus-
sian quadrature with order (KG,KG) 2 N2. The second
integral is approximated using the strategy explained in the
previous paragraph.

Remark 8.2. One could use different orders K, KI , KG

(and (KG,KG) for the final domain) on each domain. For
simplicity, to reduce the number of hyperparameters, we
have kept them the same across all domains.

8.3. Numerical evaluation of variances
Next, we explain how to compute EAl

⇣
kJ � µlk2

⌘
given

Fourier coefficients a. To this end, first observe that the area
of Al is given by

�(Al) =

8
>>>>>>><

>>>>>>>:

1

2

ˆ 2⇡

0
r0(✓)

2 d✓, l = 0,

1

2

ˆ 2⇡

0

�
rl(✓)

2 � rl�1(✓)
2
�
d✓, 1  l  m� 1,

(n2 � 1)(n1 � 1)� 1

2

ˆ 2⇡

0
rm�1(✓)

2 d✓, l = m,

where � is the Lebesgue measure on Rn. Using the Fourier
representations of the polar curves rl, we see that

�(Al) =

8
>>>><

>>>>:

⇡ (a0 ⇤ a0)0 , l = 0,

⇡ ((al ⇤ al)0 � (al�1 ⇤ al�1)0) , 1  l  m� 1,

(n2 � 1)(n1 � 1)� ⇡ (am�1 ⇤ am�1)0 , l = m,

where ⇤ denotes the two-sided discrete convolution. We use
these computations to turn each Al into a probability space
(Al,B (Al) ,Pl), where B (Al) is the Borel-sigma algebra
on Al, and Pl =

�|Al
�(Al)

.
We may now readily use the approximation techniques

described in the previous section to approximate the variance
of J on Al:

EAl

⇣
kJ � µlk2

⌘
=

1

�(Al)

ˆ
Al

kJ (x)� µlk2 dx,

µl =
1

�(Al)

ˆ
Al

J (x) dx

for 0  l  m.

8.4. Setting up a minimization problem
Finally, we set up a minimization problem to find a concen-
tric decomposition of Rn. We choose the initial filtration

(Vl)
m�1
l=0 as a “noisy” set of concentric nested circles. This

corresponds to the following initialization of the Fourier
coefficients of (rl)m�1

l=0 :

al = (Rl, 0, . . . , 0) + ", 0  l  m� 1,

where " ⇠ N(0K ,�IK⇥K), � > 0, Rl = l
mRmax, and

Rmax > 0 is a hyperparameter chosen so that the circle with
radius Rmax and midpoint p is contained in Rn. With this
initialization, we use the BFGS-algorithm to solve

min
a2CmK

mX

l=0

EAl

⇣
kJ � µlk2

⌘
+ w

mX

l=1

⇤(a)l

!
,

where w > 0 is a fixed weight, and

⇤(a)l :=

8
>>><

>>>:

ˆ 2⇡

0

1

rl(✓)� rl�1(✓)
d✓, 1  l  m� 1,

ˆ 2⇡

0

1

Rmax � rm�1(✓)
d✓, l = m,

is a penalty term that enforces the sets Vl to remain nested.
That is, it enforces that the boundaries do not touch each
other. The integrals are approximated, as before, by comput-
ing the zeroth Fourier coefficients of the integrands, which
in turn are obtained by sampling them on an equispaced grid
of [0, 2⇡] of size K⇤ 2 N and using the (inverse) FFT.
Remark 8.3. The penalty term for l = m could be improved
substantially by explicitly parameterizing @Rn. In particu-
lar, the current term yields a suboptimal filtration, since it
confines the final polar curve rm�1 to a circle incscribed in
Rn.

9. Calibration set sizes
It is a priori not clear what the ‘crossover’ point is from
which the Kandinsky method will outperform proper pixel-
wise calibration. In Figure 12, we present the the coverage
error for the pixelwise versus Kandinsky methods as a func-
tion of calibration dataset size. We mention that there is no
calibration set ‘too large’; the problem is that we would like
as much training data as possible and minimize the amount
of data set aside for calibration. From the Figure, we see
that the Kandinsky method is approximately constant in its
performance for all the shown calibration set sizes, whilst
the pixel-wise calibration approach clearly exhibits larger
coverage errors as the size of the calibration set decreases.
Throughout the data points, we do observe that, also for the
larger datasets, Kandinsky methods reduce the outliers in
calibration. The crossover between the means of the meth-
ods happens around a calibration dataset size of five hundred
for this specific scenario. However, it should be pointed out
that these results are specific to the model and dataset under
consideration, and we expect that the crossover point may
shift in different scenarios.

Figure 12. The pixel-wise calibration (left) starts with a higher error,
slowly decreasing with increasing calibration dataset size. The
Kandinsky method (right) remains roughly stable. For calibration
dataset sizes of size 500 or less, Kandinsky is the favorable method.

