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1. Data and Implementation Details
In this section, we provide information about the software
and the dataset used in our study. We conducted experiments
with four NVIDIA A100 GPUS with Python 3.8 and Pytorch
with CUDA 11.1.

To construct the 4M-Clean dataset, we download the
dataset corpus (CC3M+CC12M+SBU) from the official
github of BLIP. The dataset corpus is generated and fil-
tered by a model equipped with VIT-B/16 as its image trans-
former. From this corpus, we selectively utilize image-text
pairs from the (CC3M+SBU) to align with the 4M-Noisy
dataset. Note that the dataset refinement process (generating
clean captions, and filtering noisy image-text pairs) is ex-
clusively done with the web-crawled dataset (CC3M+SBU),
and (COCO+VG) dataset is incorporated in the 4M-Clean
dataset without any modification.

As described in the manuscript (Section 5), we mainly
use a synthetically generated and filtered set (Iw, Ts) from
this dataset corpus. To ensure that the size of the 4M-Clean
dataset is nearly identical to the 4M-Noisy dataset, we ad-
ditionally use the small number of (Iw, Tw) among the
(CC3M+SBU) dataset due to the synthetically generated
and filtered set (Iw, Ts) being slightly smaller than the
4M-Noisy dataset. The total number of image-text pairs in
the 4M-Noisy set and the 4M-Clean set is 4, 999, 065 and
4, 933, 639, respectively.

2. Details on counting false negatives in Section
3 (manuscript)

Here, we first clarify the purpose of using the pre-trained
BLIP (129M) model in quantitative analysis in Section 3
(manuscript) for better understanding. The quantitative analy-
sis represented in Table 1 and Figure 2 (manuscript) includes
the estimated count of false negative pairs during the ITM
task of training. The main goal is to compare the number
of false negatives arising from randomly constructed mini-
batches (typical VLP setting) to those from GRIT-sampled
mini-batches that group similar pairs in each mini-batch.
Here, to identify false negative pairs with perfect accuracy,
it is essential to employ a human evaluation process, requir-
ing manual examination of each individual negative pair
(constructed for performing ITM task) to determine if it is
matched or not. However, given the infeasibility of manually
checking all negative pairs, we have opted to leverage the
pre-trained BLIP (129M) model, a strong ITM model, as
an alternative to human evaluation. While the BLIP (129M)
does not always classify with perfect accuracy, it is deemed
sufficiently reliable for approximating the tendency of the

number of false negatives.
To validate this, we additionally conduct a human evalu-

ation on randomly sampled 200 false negatives in the 4M-
Clean dataset during training which are filtered by BLIP
(129M) filter. For this, two ML researchers manually check
whether each false negative is genuinely a false negative or
not. In this analysis, among the samples classified as false
negatives by BLIP (129M), over 83% are also determined
to be false negatives upon human evaluation. While it’s not
100% accurate, we believe that using BLIP (129M) is reason-
able for approximating the number of false negatives during
training and, consequently, for comparing the occurrence of
false negatives between random sampling and GRIT sam-
pling. To report representative numbers, the values provided
in Table 1 (manuscript) are obtained by multiplying the ac-
tual values from the BLIP (129M) model by 0.83, assuming
that human correction is statistically significant. The raw
values prior to multiplication are presented in rows 1 and 2
of Table 1.

Additionally, we examine the number of false negatives
using other discriminators, as detailed in Table 1. Unlike the
values in Table 1 (manuscript), these values are not multi-
plied by 0.83. ALBEF (14M) denotes the ALBEF model
pre-trained on the 14M dataset and fine-tuned on the MS-
COCO dataset, while BLIP-2 represents the BLIP-2 model
(equipped with ViT-g) pre-trained on 129M and fine-tuned
on the MS-COCO dataset. These results also indicate that the
tendency of false negative ratios remains consistent across
different discriminators.

Table 1. The number of false negatives (FNs) counted by various
discriminators. Unlike Table 1 (manuscript), these values represent
the raw counts without any adjustments, as the human correction
factor of 0.83 has not been applied.

Discriminator Dataset Sampling FN w.r.t. image FN w.r.t. text

BLIP (129M)
4M-Noisy Random 146,127 (2.9%) 142,265 (2.8%)

GRIT 985,531 (19.7%) 977,283 (19.5%)

4M-Clean Random 184,345 (3.7%) 179,191 (3.6%)
GRIT 1,383,752 (28.0%) 1,321,066 (26.8%)

ALBEF (14M) 4M-Clean Random 216,179 (4.4%) 210,976 (4.3%)
GRIT 1,565,023 (31.7%) 1,477,597 (29.9%)

BLIP-2 4M-Clean Random 118,118 (2.4%) 115,281 (2.3%)
GRIT 939,797 (19.0%) 859,356 (17.4%)

3. Additional analyses on false negative ratio
(FNR)

We quantify the FNR w.r.t. batch size under a random sam-
pling scenario. As shown in Figure 1, increasing the batch
size on 4M-Clean apparently results in a higher FNR. This
finding suggests the presence of a significant number of false
negatives even in a random sampling scenario with a large



batch size, which is a common practice in recent VLP train-
ing schemes such as BLIP-2. Consequently, this result also
underscores the applicability of MAFA in settings where
hard negative sampling like GRIT is not employed.

We also measure the FNR using a considerably larger,
web-crawled CC12M-Clean dataset with a default batch
size of 96. In the GRIT sampling scenario, the FNR w.r.t.
images and text is 22.2% and 20.6%, respectively, remaining
notably high. This result can serve as a proxy for the FNR
on larger-scale datasets (e.g., LAION400M [8]) since they
share a similar dataset construction pipeline: i.e., randomly
sourced from the web. Therefore, these findings highlight
the significance of addressing false negatives in recent large-
scale models and the broad applicability of MAFA.

Figure 1. FNR on 4M-Clean dataset in random sampling scenario.
Each annotated number is a mean of two ratios, w.r.t. image and
text.

4. Detailed explanation on Table 2 (manuscript)
In Table 2 (manuscript), we present the shape of soft la-
bels of three soft labeling methods: momentum distillation,
consistency loss, and S-ITC. In this section, we explain the
detailed process of constructing this table. The values in the
table are obtained in the last epoch of the training with the
following procedure.
1. For each anchor image i (resp. text t), a soft label is given

to each text tk (resp. image ik) in a batch. For the batch-
size B, k is from 1 to B. For momentum distillation with
queue size Q, k is from 1 to B +Q. The set of these soft
labels can be represented as a B (or B +Q)-dimensional
vector, which is denoted as ya for anchor a.

2. B (or B+Q) values of ya are sorted in descending order,
and it is denoted as ysorted

a .
3. Given that the model sees A anchors during an epoch

of training, all ysorted
a s are averaged, and it is denoted as

ȳsorted = 1
AΣay

sorted
a .

4. Now, B (or B +Q) values in ȳsorted are categorized into
three groups: Top1 ∼ 5, Top6 ∼ B, and TopB + 1 ∼ Q.

5. The sum of the values within each category is written in
the table.

5. Pseudocode of MAFA

We provide pseudocode in Algorithm 1 for a thorough under-
standing of the MAFA framework. Although the pseudocode
mostly follows the notation of the manuscript, there are some
modified notations to explain the process in more detail.
Specifically, ỹI2T-ITC and ỹT2I-ITC are used instead of ỹITC.
Also, in the manuscript, ỹITM is a 2-dim one-hot vector for
an image-text sample. If the sample is treated as a positive in
ITM loss, ỹITM is equal to (1, 0). If not, it is equal to (0, 1).
On the other hand, in the pseudocode, yITM

pos and ỹI2T-ITM
neg are

B-dim vectors in which the b-th element represents whether
the corresponding sample is treated as positive (1) or not (0)
in ITM loss.

6. Details on Downstream tasks

In the Supplementary Materials, the term “total batch
size” refers to the overall mini-batch size. Specifically, it
represents the product of the “number of GPUs” and the
“mini-batch size per GPU,” which is calculated as 4×B. We
primarily adhere to the implementation details of GRIT-VLP
when performing fine-tuning. During fine-tuning, we
employ randomly cropped images with a resolution of 384 ×
384. Conversely, during the inference stage, we resize the
images without cropping. Additionally, we apply the exact
same RandAugment, optimizer selection, cosine learning
rate decay, and weight decay with GRIT-VLP. Following
GRIT-VLP, we do not utilize a momentum encoder in the
pre-training phase. Consequently, the momentum distillation
(MD) technique is not employed for all downstream tasks,

[Image-Text Retrieval (IRTR)] IRTR aims to find the most
similar image to a given text or text to a given image. Fol-
lowing GRIT-VLP, we do not use the momentum distillation
for ITC, but use the queue and negatives from the momen-
tum encoder when calculating ITC loss in the fine-tuning
step. For model fine-tuning, we use the COCO and Flickr-
30K datasets. Specifically, the COCO dataset, comprising
113,000 training images, 5,000 for validation, and another
5,000 for testing, is fine-tuned over 5 epochs. Conversely,
the Flickr-30K dataset, with 29,000 training images, 1,000
for validation, and 1,000 for testing, undergoes a longer
fine-tuning phase of 10 epochs. For evaluation, we use a 5K
COCO test set and Flickr-1K set following previous works.
During the fine-tuning phase, we use a total batch size of
256 and an initial learning rate of 1e-5 for both datasets.
Following ALBEF, during evaluation, we employ a two-step
process. First, we retrieve the top-k candidates by calculat-
ing image-text contrastive similarities only using uni-modal
encoders. Then, we re-rank them with ITM scores. Here, k



Algorithm 1: MAFA
Inputs :Image-text paired dataset D, Initialized model f0
Output :Trained model f

1 f ← f0
2 Con-D← Train-Discriminator(D, f0)
3 for epoch = 1, 2, ..., E do

/* 1.Similar samples are grouped by GRIT (Line 4) */

4 D̃ ← GRIT(D, f )
5 foreach {(Ib, Tb)}Bb=1 ∈ D̃ do
6 {ib}Bb=1, {tb}Bb=1 ← f image

encoder({Ib}Bb=1), f
text
encoder({Tb}Bb=1)

7 ỹI2T-ITC, ỹT2I-ITC ← IdB , IdB // IdB:B ×B Identity matrix

8 yITM
pos , ỹI2T-ITM

neg , ỹT2I-ITM
neg ← 1B ,0B ,0B // 1B:B-dim one vector, 0B:B-dim zero vector

9 Dpos
ITM, Dneg

ITM, DMLM ← {(ib, tb)}Bb=1, {}, {(ib, Tb)}Bb=1

10 for b = 1, ..., B do
/* 2.A hard negative is picked per anchor (Line 11) */

11 k ← argmaxj ̸=b s(ib, tj)
/* 3.A new connection is established (Line 12-20) */

12 pcon ← Con-D(ib, tk)
13 if pcon > 0.8 then
14 ỹI2T-ITC

b [k]← 1 // ỹI2T-ITCb :b-th row of ỹI2T-ITC

15 ỹI2T-ITM
neg [b]← 1

16 DMLM ← DMLM ∪ {(ib, Tk)}
17 else if 0.5 < pcon < 0.8 then
18 k ← argmaxj ̸=b,k simf (ib, tj)
19 end
20 Dneg

ITM ← Dneg
ITM ∪ {(ib, tk)}

21 ỹI2T-ITC
b ← ỹI2T-ITC

b

Σj ỹI2T-ITC
b [j]

/* (Line 11-22) are for an image anchor ib. Similarly, execute for a text anchor tb */

22 end
23 LECM

S-ITC ← S-ITC-Loss(f, ỹI2T-ITC, ỹT2I-ITC, {(ib, tb)}Bb=1)
24 LECM

ITM ← ITM-Loss(f, yITM
pos , ỹI2T-ITM

neg , ỹT2I-ITM
neg , Dpos

ITM ∪Dneg
ITM)

25 LECM
MLM ←MLM-Loss(f,DMLM)

26 f ← Backward-Update(f , LECM
S-ITC + LECM

MLM + LECM
ITM )

27 end
28 end
29 return f

is set to 256 and 128 for COCO and Flickr, respectively
[Visual Reasoning (NLVR2)] NLVR2 is a classification
task based on one caption and two images. Since the model
architecture should be changed to get two images as an in-
put, the fine-tuning step of NLVR2 requires an additional
pre-training phase with the 4M-Noisy dataset for 1 epoch.
For this pre-training phase, we employ a batch size of 256
and set the learning rate to 2e− 5, and the image resolution
is set as (256 × 256). After the single epoch pre-training
phase, we fine-tune the model for 10 epochs while using a
total batch size of 64.
[Visual Question Answering (VQA)] VQA is a task to ob-
tain an answer given image and question pair. We perform

experiments on the VQA2.0 dataset [4], which is divided
into training, validation, and test sets with 83,000, 41,000,
and 81,000, respectively. Both the training and validation set
are utilized for training. Following GRIT-VLP and ALBEF,
we also include additional pairs from Visual Genome. Fine-
tuning is conducted for 8 epochs, employing a total batch
size of 128 and an initial learning rate of 2e− 5. For a fair
comparison, the decoder only generates answers from 3192
candidates.



Table 2. Comparison with state-of-the-art: fine-tuned results of IRTR on Flickr30K and MSCOCO datasets

Method Pre-train
# Images

MSCOCO (5K test set) Flickr30K (1K test set)
TR TR TR IR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
UNITER 4M 65.7 88.6 93.8 52.9 79.9 88.0 87.3 98.0 99.2 75.6 94.1 96.8
VILLA 4M - - - - - - 87.9 79.30 76.3 73.67
OSCAR 4M 70.0 91.1 95.5 54.0 80.8 88.5 - - - - - -
ALBEF 4M 73.1 91.4 96.0 56.8 81.5 89.2 94.3 99.4 99.8 82.8 96.7 98.4

TCL 4M 75.6 92.8 96.7 59.0 83.2 89.9 94.9 99.5 99.8 84 96.7 98.5
BLIP* (4M-Clean) 4M 76.5 93.2 96.8 58.9 83.1 89.6 94.3 99.4 99.9 82.6 96.2 98.3

GRIT-VLP* 4M 76.6 93.4 96.9 59.6 83.3 89.9 95.5 99.6 99.8 82.9 96.2 97.9
MAFA 4M 78.0 94.1 97.2 61.2 84.3 90.3 96.1 99.8 100 84.9 96.5 98.0

MAFA (4M-Clean) 4M 79.4 94.4 97.5 61.6 84.5 90.4 96.2 99.9 100 84.6 96.4 98.1
ALBEF 14M 77.6 94.3 97.2 60.7 84.3 90.5 95.9 99.8 100 85.6 97.5 98.9
BLIP 14M 80.6 95.2 97.6 63.1 85.3 91.1 96.6 99.8 100 87.2 97.5 98.8

Table 3. Ablation study on the proposed method: fine-tuned results of IRTR on Flickr30K and MSCOCO datasets.

Pre-train
dataset

MAFA MSCOCO (5K test set) Flickr30K (1K test set)
TR IR TR IR

S-ITC ECM R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

4M-Noisy

✗ ✗ 76.6 93.4 96.9 59.6 83.3 89.9 95.5 99.6 99.8 82.9 96.2 97.9
✗ ✓ 77.4 93.9 96.9 60.2 83.8 90.4 95.5 99.5 99.8 83.7 96.3 98.0
✓ ✗ 77.5 94.3 97.2 60.5 83.7 90.2 96.1 99.8 99.9 84.2 96.3 98.1
✓ ✓ 78.0 94.1 97.2 61.2 84.3 90.3 96.1 99.8 100.0 84.9 96.5 98.0

4M-Clean ✗ ✗ 77.7 93.5 96.9 60.7 83.3 90.1 95.2 99.6 99.9 84.2 95.8 98.0
✓ ✓ 79.4 94.4 97.5 61.6 84.5 90.4 96.2 99.9 100.0 84.6 96.4 98.1

Table 4. Comparison of computational costs. MD represents mo-
mentum distillation.

Model Time per epoch Parameters Queue for MD Queue for GRIT
ALBEF 3h 10m 210M (MD: 210M) 65536 -
BLIP 3h 30m 252M (MD: 252M) 57600 -

GRIT-VLP 2h 30m 210M - 48000
MAFA 3h 06m 210M (Con-D: 210M) - 48000

7. Additional Experimental Results

7.1. Experiments on diverse data scales

We carry out additional experiments on various data scales
under GRIT-sampling. For a large-scale dataset, we utilize
the 14M-Clean dataset (CC12M-Clean + 4M-Clean), and
for small-scale datasets, we use 1M and 2M subsets ran-
domly selected from the 4M-Clean dataset. To compare the
overall performance, we compute the accuracy of each of
the four tasks (COCO-IRTR, Flickr-IRTR, NLVR2, VQA)
by averaging their respective metrics: TR/R@1, TR/R@5,
TR/R@10, IR/R@1, IR/R@5, IR/R@10 for IRTR, dev and
test-P for NLVR2, and text-dev and test-std for VQA. Then,
we sum up the four averaged values. In Figure 2, we observe
that MAFA consistently achieves considerable performance
improvements across all data scales compared to GRIT-VLP,
again demonstrating the robustness of MAFA w.r.t. data scale
variations.

Figure 2. The score denotes the sum of the average results of four
tasks (COCO-IRTR, Flickr-IRTR, NLVR2, and VQA).

7.2. Computation comparison

We describe the computational cost for pre-training. Table 4
shows the pre-training time per epoch, the number of param-
eters of the model, and queue size. Here, the “MD” denotes
additional model parameters for the momentum model, and
“Con-D” denotes additional model parameters for Con-D
in the pre-training phase. As pointed out in the manuscript
(Section 4), although MAFA becomes relatively slower than
the GRIT-VLP, it is still competitive with ALBEF, and faster
than BLIP.

7.3. Detailed experiments on overall framework

We present a comprehensive comparison of various baselines
on image-text retrieval tasks in Table 2. We observe a simi-



lar tendency in the manuscript (Section 5). Namely, MAFA
mostly surpasses other baselines in performance when pre-
trained on the 4M-Noisy dataset, outperforming even AL-
BEF pre-trained on the much larger dataset (14M). Moreover,
in the case of the 4M-Clean dataset, MAFA again shows a
significant improvement over BLIP, which is pre-trained on
the same dataset.

7.4. Analysis on search space

When applying GRIT sampling, the degree of similarity
between samples within a batch is influenced by the search
space since GRIT groups together similar samples within
that specific search space. Consequently, an increase in the
search space leads to a higher number of false negatives as
shown in Figure 2 (manuscript). We observe that the average
IRTR performance of GRIT-VLP is decreased as the search
space increases, as shown in Table 5. In contrast, MAFA
shows a performance improvement with larger search spaces
and consistently outperforms GRIT-VLP regardless of the
search space. We believe this result shows the effectiveness
of MAFA in managing false negatives.

Table 5. Performance comparison of GRIT-VLP and MAFA on
COCO using different search space sizes.

Method M
MSCOCO (5K test set)

TR IR AvgR@1 R@5 R@10 R@1 R@5 R@10

GRIT-VLP
960 76.7 93.9 97.2 59.6 83.5 90.1 83.5

4800 76.6 93.4 96.9 59.6 83.3 89.9 83.3
48000 77.0 93.1 96.6 59.2 83.1 89.8 83.1

MAFA
960 77.6 94.4 97.1 60.7 84.1 90.2 84.0

4800 78.0 94.1 97.2 61.2 84.3 90.3 84.2
48000 78.3 94.2 97.3 61.4 84.4 90.5 84.4

7.5. Detailed experiments on ECM

[Comparative analysis with ECM variants] We conduct
a comparative analysis of different uses of new missing
positives constructed from ECM. Namely, we assess the
performance of models when new positives are exclusively
incorporated in ITC, ITM, and MLM, respectively. As can be
verified in Table 6, the usage of new positives is effective for
each of these objectives. We believe the relatively marginal
impact of new positives in ITC arises from the possible in-
clusion of additional false negatives in the mini-batch, which
highlights the necessity of S-ITC. Moreover, their combined
usage across three objectives leads to more improvements.
We believe this result clearly shows the benefits of using new
missing positives constructed from ECM, across all objec-
tives. Note that all variants do not use S-ITC as objectives
here.
[Robustness of MAFA for varying threshold τ ] We evalu-
ate the impact of choosing different thresholds τ for Con-D.
Table 7 demonstrates that ECM process exhibits stability
across different thresholds. Here, if τ is set to 0.5, the re-
sampling strategy for ITM is omitted.

Table 6. Comparison of COCO performance with ECM-variants

ECM MSCOCO (5K test set)
TR IR

ITC ITM MLM R@1 R@5 R@10 R@1 R@5 R@10 Avg
✗ ✗ ✗ 76.6 93.4 96.9 59.6 83.3 89.9 83.3
✓ ✗ ✗ 77.1 93.5 96.8 59.7 83.4 90.1 83.4
✗ ✓ ✗ 77.1 93.5 97.3 59.9 83.7 90.0 83.6
✗ ✗ ✓ 77.4 93.7 97.0 59.9 83.2 89.9 83.5
✓ ✓ ✓ 77.4 93.9 96.9 60.2 83.8 90.4 83.8

Table 7. Comparison of COCO performance using different thresh-
old τ

τ
COCO R@1 NLVR2 VQA
IR TR dev test-P test-dev test-std

0.5 78.0 61.2 82.06 82.35 75.60 75.78
0.8 78.0 61.2 82.52 82.08 75.55 75.77

[Comparison with oracle Con-D] We measure the perfor-
mance of MAFA using different Con-D: one pre-trained on
the 4M-Noisy dataset and the other obtained from BLIP
(pre-trained with 129M dataset). In Table 8, we observe
that MAFA exhibits only a little performance gap with the
MAFA (Oracle). We believe this result shows that the Con-D
constructed with a 4M-Noisy dataset is sufficient to reliably
identify false negatives within that particular dataset. This
aligns with the findings of BLIP, where it was shown that
a filter trained with a noisy dataset of the same scale can
effectively handle false positives within that specific dataset.

Table 8. Comparison with MAFA (Oracle) which uses the strong
Con-D pre-trained with 129M data from BLIP

Dataset Method COCO R@1 Flickr R@1
TR IR TR IR

4M-Noisy
GRIT 76.6 59.6 95.5 82.9
MAFA 78.0 61.2 96.1 84.9

MAFA (Oracle) 78.5 61.2 95.8 84.2

7.6. Additional analyses on ITC

[Effect of Queue in Momentum Distillation] In this sec-
tion, we present additional experiments and analyses that
delve deeper into the topics discussed in the manuscript.
Given the significance of larger batch sizes in contrastive
learning, it is standard practice to maintain a sufficient num-
ber of negative samples by employing a queue. To investigate
the impact of the queue, we compare the performance of mo-
mentum distillation with a queue (MD) and without a queue
(MDNQ).

Table 9 shows the results of our observations regarding
the effect of the queue in the GRIT sampling scenario. We
observe that the queue has a detrimental effect on perfor-
mance in this particular setting. This can be attributed to
the substantial increase in the number of negatives, which
consequently leads to significantly smaller labels assigned
to negatives (compared to the case without a queue). The



impact of the queue highlights the crucial requirement of
non-zero soft labels in the GRIT sampling scenario.

Table 9. Comparison of smoothing for ITC.

Method Label smoothing COCO R@1 Flickr R@1
TR IR TR IR

ALBEF

X 74.4 57.6 93.5 81.7
MDNQ 73.8 57.9 93.3 81.5

MD 74.2 57.4 93.5 81.9
S-ITC 73.5 56.1 92.9 79.9

GRIT-VLP

CS 76.6 59.6 95.5 82.9
MDNQ 77.1 59.8 95.5 83.8

MD 76.1 58.9 94.4 82.7
S-ITC 77.5 60.5 96.1 84.2

[Effect of Mixing parameter α] As depicted in Table 2
(manuscript), the failure of MD and CS to provide soft la-
bels can be attributed to different reasons. MD fails due to
the large size of the queue (48000), while CS excessively
concentrates only on a few similar samples. Adjusting the
parameter α alone does not resolve this issue, as the underly-
ing problem lies in the inclination of the model to favor the
closest few samples. Moreover, naively increasing the value
of α poses another challenge in training the model which
amplifies the portion of uncertain labels of the momentum
model (or the model itself) rather than ground-truth labels.

On the contrary, as shown in Table 10, the S-ITC method
demonstrates robustness across a wide range of α values
from 0.1 to 0.7. This highlights the distinct approach of
S-ITC, which deviates from the inclination of the model
towards the closest samples and effectively assigns non-zero
labels to majorities of the negatives in the GRIT sampling
scenario.

Table 10. Comparison of COCO performance using varying α of
S-ITC in the GRIT sampling scenario, with a fixed training epoch
of 10.

MSCOCO (5K test set)
TR IR

α R@1 R@5 R@10 R@1 R@5 R@10 Avg
0.1 75.5 93.3 96.9 58.4 82.7 89.3 82.7
0.3 75.8 93.0 96.4 58.8 82.7 89.4 82.7
0.5 75.6 92.9 96.6 59.0 82.8 89.6 82.7
0.7 75.3 93.1 96.7 58.3 82.6 89.3 82.6
0.9 73.0 92.1 96.2 56.4 81.3 88.6 81.3

7.7. Details on experiments with BLIP-2

BLIP-2 aims to propose an efficient vision-language pre-
training framework that connects off-the-shelf frozen pre-
trained image encoders and frozen large language models.
To bridge the modality gap, BLIP-2 adopts a lightweight
Querying Transformer (Q-Former), which is pre-trained in
two stages. In stage 1, Q-Former is pre-trained to extract
visual features relevant to text from a frozen image encoder

with ITC, ITM, and (autoregressive) LM objectives. Thus,
the training objectives are almost the same as those of AL-
BEF [5] and BLIP [6]. In stage-2, Q-Former is connected to
a frozen LLM and pre-trained with LM loss to generate the
text conditioned on the visual representation from Q-Former.

We mainly follow the default implementation setting of
BLIP-2. Namely, we use ViT-G/14 from EVA-CLIP [3] as
the vision encoder and OPT-2.7B [9] as a language decoder.
Moreover, Q-Former is initialized with BERT-base [2] and
has 32 learnable queries per single representation. For train-
ing and evaluation of BLIP-2, we use 8 A100 GPUs. For
stage 1, we use the total batch size as 384 which is the
same as the previous setting (in the manuscript). For stage 2,
we use the total batch size as 512. For image-text retrieval
fine-tuning, we use 112 as the total batch size. For other
hyper-parameters, we use exactly the same as the default
setting from BLIP-2 [7]. For GRIT sampling, we choose
3840 as search space, which is 10 times of the batch size.
Since BLIP-2 uses 32 queries per image, we extract a single
query representation that has a maximum similarity with its
corresponding text and then use this representation to find
similar examples for GRIT sampling.

For MAFA, to accelerate the efficiency of the experiment,
we omit the re-sampling strategy in ITM and usage of ad-
ditional positives, and we set α as 0.2 for S-ITC. Note that
GRIT sampling and MAFA are only applied in stage-1. In
both two stages, we use the 4M-Noisy dataset. Moreover, as
mentioned in Section 5 (manuscript), since the exclusive use
of GRIT sampling causes the failure of learning, we omit the
results of “BLIP-2+GRIT” in stage 2. In addition, to adopt
MAFA, we utilize the original BLIP-2 model for Con-D,
which is pre-trained with the 4M-Noisy dataset and then
fine-tuned with the COCO dataset. For zero-shot VQA tasks,
following BLIP-2, we utilize the prompt “Question: Answer:”
and beam search with beam width 5 and set length-penalty
to -1 for all models.

7.8. Additional results with BLIP-2

[Results on fine-tuned image captioning] We fine-tune
models on COCO with 5 epochs with a total batch size of
128. We use the prompt “a photo of” as the initial input for
the LLM decoder (OPT-2.7B model) and train with autore-
gressive LM loss. For all other hyper-parameters, we use
the exact same hyper-parameters as BLIP-2. In fine-tuning,
the parameters of the Q-Former and image encoder are only
updated while those of LLM are kept frozen. We evaluate
models on both the Karpathy test split of MSCOCO and
zero-shot transfer ability to NoCaps dataset [1]. The results,
which can be observed in Table 11, indicate a similar trend
in zero-shot ability. Namely, MAFA significantly enhances
the captioning ability. Note that MAFA is exclusively used
in stage 1 and not used in stage 2 and the fine-tuning stage.
[Results of stage-2 with extra positives from ECM] To fur-



Table 11. Results on NoCaps and COCO Caption. All methods are fine-tuned. C: CIDEr, S: SPICE, B@4: BLEU@4.

Model
NoCaps Zero-shot (validation set) COCO Fine-tuned

Karpathy testin-domain near-domain out-domain overall
C S C S C S C S B@4 C

BLIP-2 109.55 14.46 105.83 14.26 106.33 13.51 106.47 14.14 40.7 139.7
BLIP-2+MAFA 114.67 15.19 111.74 14.88 113.29 14.27 112.48 14.80 41.6 142.5

Table 12. Effectiveness of extra positives from ECM (stage 2).

Model VQAv2 OK-VQA GQA
COCO zero-shot

Karpathy test Sum
val test test-dev BLEU@4 CIDEr

4M 46.6 23.8 29.1 35.6 118.8 253.9
repeated-6M 47.9 24.9 30.8 35.8 118.3 257.7

ECM-6M 47.4 27.0 30.9 37.5 123.6 266.4

ther investigate the wider applicability of ECM in VLP mod-
els (w/o ITC and ITM), we conduct additional experiments
on BLIP-2 stage-2 model with extra positives generated by
ECM. Here, in contrast to the results in Tables 7, 8 and
11 (manuscript), stage-1 model is trained without MAFA.
Namely, before training stage-2 model, by applying GRIT-
sampling and using the frozen BLIP-2 stage-1 model as our
Con-D, we generate 2M additional positives with a single
forward pass, augmenting the original 4M-Noisy dataset. As
reported in Table 12, we observe the stage-2 model, which
is trained on this “ECM-6M” (4M-Noisy + ECM-generated
2M) dataset, significantly outperforms the baseline trained
on “repeated-6M” (4MNoisy + 2M sampled from the same
4M-Noisy) dataset. The scores are 266.4 vs. 257.7 in which
the zero-shot results across VQA, OK-VQA, GQA, and
COCO captioning tasks are summed. We believe this result
validates the effectiveness of ECM-generated positives and
underscores the general applicability of our framework.

8. Additional examples of new positive connec-
tions by ECM in training

We provide additional examples of new positive connections
by ECM during training. Figures 3 and 4 show anchors ([An-
chor]), their corresponding pairs ([Positive]), and new posi-
tives ([False Negative]) constructed by ECM during training.
The number in parentheses indicates the ITM score between
the anchor and the false negative computed by Con-D.

Figure 3. Examples of new positive connections constructed by
ECM with respect to the texts during training.



Figure 4. Examples of new positive connections constructed by
ECM with respect to the images during training.
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