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A. Diagrams of AdaShift-MA Derivatives
In Section 4.3 (Ablation Study), we validated the extensibility of our AdaShift prototype by presenting three new ex-
tended practical AdaShift derivatives based on AdaShift-MA, which we refer to as AdaShift-MA-N1, AdaShift-MA-N2, and
AdaShift-MA-N3, respectively. In this Appendix, we depict the operational diagrams of AdaShift-MA-N1 and AdaShift-
MA-N2 in Figures 1 and 2, correspondingly. Note that AdaShift-MA-N3 is a combined strategy of AdaShift-MA-N1 and
AdaShift-MA-N2, i.e., it employs AdaShift-MA-N1 at the nodes that converge both the expanded main and residual features
and applies AdaShift-MA-N2 to process unexpanded features only.
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Figure 1. Illustration of AdaShift-MA-N1. M “ rH{KHs ¨ rL{KLs . ¯̃Y P RCˆrH{KH sˆrL{KLs denotes the residual feature map; ¯̃Z “
”

¯̃X; ¯̃Y
ı

P R2CˆrH{KH sˆrL{KLs is produced by concatenating the channels of ¯̃X and ¯̃Y. “Elem” denotes “Element-wise” and “Mult” denotes
“Multiplication.” Note that AdaShift-MA-N1 is only applicable to the nodes that converge both the main and residual features, otherwise
regresses to AdaShift-MA.
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Figure 2. Illustration of AdaShift-MA-N2. M “ rH{KHs ¨ rL{KLs . “Elem” denotes “Element-wise” and “Mult” denotes “Multiplication.”
Note that AdaShift-MA-N2 is only applied to the layers that process unexpanded features (e.g., the second layer of a bottleneck residual
block [9]) to avoid bringing excessive parameters.



B. Discussion of AdaShift: from MCDM-inspired Intuitions and Properties
In this Appendix, we discuss the attributes of AdaShift-B (as the representative of the practical AdaShift family) in light of the
basic intuitions and assumed properties of neural activation inspired by the MCDM hypothesis [3]. Below we demonstrate
that AdaShift-B is consistent with the basic MCDM-inspired intuitions and holds the corresponding (assumed) properties.

Retrospect.
Intuition 1. Let ϱ px̃q denote an unknown ideal similarity measure that reflects the unbiased feature importance score of
the given feature vector x w.r.t. the given filter (vector) w. Let ϱ̂ ppx̃q denote an updatable term that learns to gradually
approximate ϱ px̃q in the training phase, namely, the approximated similarity.

Then, it is expected that:

Property 1. (The Directional Monotonicity ^ Sign Constraint of ς pϱxq About ϱx) |ς pϱ px̃qq| ě |ς pϱ pỹqq| if ϱ px̃q ě ϱ pỹq.

Particularly, Property 1 can be ensured by the simple condition

Proposition 1. Property 1 ðñ (1) ς pϱxq is (monotonically) non-decreasing about ϱx ^ ς pϱxq ě 0 _ (2) ς pϱxq is (mono-
tonically) non-increasing about ϱx ^ ς pϱxq ď 0 (ϱx denotes ϱ px̃q; ^ denotes “and;” _ denotes “or”).

Following we show that AdaShift-B satisfies holds Property 1.

Discussion. First, AdaShift-B, i.e., ϕ px̃q “ ρ px̃q x̃ “ ς px̃ ` ∆q x̃ , learns to approximate the ideal similarity measure ϱ px̃q

of the input x̃ by ϱ̂x “ ϱ̂ px̃q “ x̃ ` ∆ , where the adaptive shift factor ∆ is defined in Sec. 3.3 and the adjuster ς is an
vanilla Sigmoid function of ϱ̂x, i.e., ς pϱ̂xq “

ϱ̂x

1`ϱ̂x
. Therefore, @ϱ̂x P R , ς pϱ̂xq is monotonically non-decreasing about ϱ̂x ^

ς pϱ̂xq ě 0. That is, AdaShift-B (with a Sigmoid adjuster) naturally satisfies the assumed conditions of Proposition 1. This
ensures Proposition 1 for AdaShift-B.

Intuition 2. CNI: Any negative candidate is expected to be assigned with a limited weight to constrain its influence.

Property 2. (CNI)
1. Basic case: Dη P R,Mx´ ě 0 such that @ϱ px̃q ă η, we have (1) |ς pϱ px̃qq| |ϱpx̃qăηď Mx´ ; (2) Especially, we expect

limϱpx̃qÑ´8 |ς pϱ px̃qq| “ 0 .
2. Strict case: Dη P R,Mx´ ě 0 such that @ϱ px̃q ă η, we have |ρ px̃q x̃| |ϱpx̃qăηď Mx´ (with the auxiliary conditions:

ϱ px̃q is (a) (uniformly) continuous about x̃ on the domain; (b) differentiable about x̃ or at most has a finite number of
points where the left- and right-hand limits exist but are unequal).

Following we show that AdaShift-B holds Property 2.

Discussion. The core spirit of Property 2 is to selectively constrain the influence of non-important (negative) alternative
candidates (i.e., features). We first analyze a simple case and then generalize it to an extended case.

Simple case. In the simple case, we take into account the re-scaling effect of the Z-Scoring of LayerNorm. That is, ∆ (i.e.,
∆c, which we specified as in the subsequent text for clarity) can be expressed by:

∆c “

”

LN
´

avgpoolHˆL

´

X̃
¯¯ı

c
“ LN p¯̃xcq “ 9γc

¯̃xc ´ µx̄

δx̄
` 9βc , (1)

where µx̄ and δx̄ denote the mean value and (unbiased estimation of) standard deviation of channel mean vector (i.e., ¯̃x,
where ¯̃xc is the c-th element of ¯̃x), respectively. 9γc and 9βc denote the channel-wise scaling and shift factors (applied to
introduce the parametric element-wise affine of LayerNorm), respectively.

Then, for ϱ̂x Ñ ´8 (i.e., x̃c ` ∆c ´ 8), only two cases are possible, i.e., (1) x̃c Ñ ´8; (2) x̃c Ñ `8. Note that here
we solely discuss the function of the concerned input, i.e., x̃c, so other terms (e.g., x̃i, i ‰ c) are treated as known values.

Below we first consider the case (1) and generalize the deduced conclusion to the case (2). For case (1), we have:

lim
x̃cÑ´8

µx̄ “ lim
x̃cÑ´8

¯̃xc ´
1

C
¯̃xc ´

1

C

C
ÿ

i“1,i‰c

¯̃xi “
C ´ 1

C
¯̃xc ´

1

C

C
ÿ

i“1,i‰c

¯̃xi , (2)

so that we only need to consider the term C´1
C

¯̃xc and denote this term as κµx̃c, where limx̃cÑ´8 κµ “ C´1
C¨N , where N “ H ¨L

denotes the total number of pixel locations of the current feature map. Therefore, κµ is a finite value.



Similarly, for δx̄, we have:

lim
x̃cÑ´8

δx̄ “ lim
x̃cÑ´8

g

f

f

f

e

C
ř

i“1

p¯̃xi ´ µx̄q
2

C ´ 1
“ lim

x̃cÑ´8

d

p¯̃xc ´ ¯̃xcq `
C
ř

i“1,i‰c

p¯̃xi ´ µx̄q
2

?
C ´ 1

“ lim
x̃cÑ´8

d

C
ř

i“1,i‰c

p¯̃xi ´ µx̄q
2

?
C ´ 1

“ lim
x̃cÑ´8

d

C
ř

i“1,i‰c

´

pκµx̃cq
2

´ 2¯̃xi pκµx̃cq ` ¯̃x2
i

¯

?
C ´ 1

Ñ
1

?
C ´ 1

g

f

f

e

C
ÿ

i“1,i‰c

´

pκµx̃cq
2

´ 2¯̃xi pκµx̃cq

¯

. (3)

Note that as δx̄ is also essentially a first-order value of x̃c (like µx̄) and only pκµx̃cq
2 is the first-order value of x̃c in δx̄, we

can also represent it by κσx̃c, where

lim
x̃cÑ´8

|κσ| “ lim
x̃cÑ´8

1?
C´1

c

p¯̃xc ´ µx̄q
2

`
řC

i“1,i‰c

´

pκµx̃cq
2

´ 2¯̃xi pκµx̃cq ` ¯̃x2
i

¯

|x̃c|

“ lim
x̃cÑ´8

1?
C´1

b

p¯̃xc ´ µx̄q
2

`
řC

i“1,i‰c pκµx̃cq
2

|x̃c|

“ lim
x̃cÑ´8

1?
C´1

b

p¯̃xc ´ µx̄q
2

` pC ´ 1q pκµx̃cq
2

|x̃c|

“ lim
x̃cÑ´8

1
?
C ´ 1

d

p¯̃xc ´ µx̄q
2

` pC ´ 1q pκµx̃cq
2

x̃2
c

“ lim
x̃cÑ´8

1
?
C ´ 1

d

ˆ

1

N
´ κµ

˙2

` pC ´ 1q pκµq
2

“

d

`

1
N ´ κµ

˘2

C ´ 1
` κ2

µ . (4)

That is, we can re-write ∆c when x̃c Ñ ´8 as:

lim
x̃cÑ´8

∆c “ 9γc

1
N x̃c ´ κµx̃c

´κσx̃c
` 9βc “ 9γc

1
N x̃c ´ κµx̃c

´κσx̃c
` 9βc “ ´ 9γc

1
N ´ κµ

κσ
` 9βc , (5)

which regresses to a known value that consists of N , κµ, κσ , 9γc, and 9βc.
With the above deduced conclusion, we have:

lim
ϱ̂px̃qÑ´8

pς pϱ̂ px̃qq x̃q “ lim
px̃`∆qÑ´8

sigmoid px̃ ` ∆q x̃ “ lim
px̃`∆qÑ´8

ex̃`∆

ex̃`∆ ` 1
¨ x̃

“ lim
zÑ`8

e´z

e´z ` 1
¨ p´z ´ ∆q |z“´px̃`∆q “ lim

zÑ`8

´ z`∆
ez

e´z ` 1

“
0

0 ` 1
“ 0 . (6)

This conclusion can be simply generalized to the case (2) (i.e., x̃c Ñ `8).
Therefore, AdaShift-B holds (the strict case of) Property 2.

Extended case. For more generality, we discuss an extended case where

∆c “ 9γc ¯̃xc ` 9βc . (7)



That is, the Z-Scoring which regresses ∆c to a known value is removed to relax the value constraint of ∆c.
With the above condition, similar to the simple case, ϱ̂ px̃q Ñ ´8 is only possible for (1) x̃c Ñ ´8 and (2) x̃c Ñ `8 .
Then, for x̃c Ñ ´8, we have:

lim
ϱ̂px̃qÑ´8

pς pϱ̂ px̃qq x̃q “ lim
px̃`∆qÑ´8

sigmoid px̃ ` ∆q x̃

“ lim
px̃`∆qÑ´8

ex̃`∆

ex̃`∆ ` 1
x̃

“ lim
pp1`

9γc
N qx̃c` 9βcqÑ´8

ep1`
9γc
N qx̃c` 9βc

ep1`
9γc
N qx̃c` 9βc ` 1

¨ x̃

“ lim
zÑ`8

e´z

e´z ` 1
¨ ´

z ` 9βc

1 `
9γc

N

|z“´pp1`
9γc
N qx̃c` 9βcq

“ lim
zÑ`8

˜

´N

N ` 9γc
¨

z` 9βc

ez

e´z ` 1

¸

“
´N

N ` 9γc
¨

0

0 ` 1

“ 0 . (8)

This ensure that the (the strict case of) Property 2 holds for the extended case (of AdaShift-B).
Intuition 3. PPI: Any two important candidates with close importance are expected to be assigned with comparable weights
to ensure comparable influence, i.e., the relatively more important candidate will not cover the influence of another.
Property 3. (PPI)

1. Basic case: Dη P R,Mx` ě 0 such that @ϱ px̃q ą η we have |ς pϱ px̃qq| |ϱpx̃qąηď Mx` .
2. Strict case: Dη P R,Mx` ě 0, such that @ϱ px̃q ą η we have |∇x̃ pρ px̃q x̃q| |ϱpx̃qąηď Mx` at any x̃ where ϕ px̃q is

differentiable (with the auxiliary conditions: ϱ px̃q is (a) (uniformly) continuous about x̃ on the domain; (b) differentiable
about x̃ or at most has a finite number of points where the left- and right-hand limits exist but are unequal).

Following we show that AdaShift-B holds Property 3.

Discussion. The core spirit of Property 3 is to preserve the positive influence of different important alternative candidates
(i.e., features). We analyze this based on the simple case and the extended case of ∆c introduced in the above discussion of
Property 2.

In particular, Property 3 can be satisfied by the Lipschitz continuity of the overall activation function ϕpx̃cq according to
its definition. Therefore, below we confirm the Lipschitz continuity of ϕpx̃cq of AdaShift-B.

First, the (partial) derivative of AdaShift-B about the concerned input x̃c can be calculated by:

∇x̃cϕ px̃cq “
B psigmoid px̃c ` ∆q ¨ x̃cq

Bx̃c

“
Bsigmoid px̃c ` ∆q

Bx̃c
¨

B px̃c ` ∆q

Bx̃c
¨ x̃c ` sigmoid px̃c ` ∆q . (9)

For the simple case where Z-Scoring is applied, ∆c is always a bounded value that has a weak relationship to the input
x̃c (i.e., can be regarded as a zero-order value of x̃c). Therefore, we can treat ∆c as a known value in the calculation of
∇x̃c

ϕ px̃cq, i.e.,

∇x̃c
ϕ px̃cq “

Bsigmoid px̃c ` ∆q

Bx̃c
¨ x̃c ` sigmoid px̃c ` ∆q

“
ex̃`∆

ex̃`∆ ` 1
¨

ˆ

1 ´
ex̃`∆

ex̃`∆ ` 1

˙

¨ x̃c ` sigmoid px̃c ` ∆q

“
x̃c ¨ ex̃`∆

pex̃`∆ ` 1q
2 ` sigmoid px̃c ` ∆q

ă
x̃c ¨ ex̃`∆

pex̃`∆ ` 1q
2 ` 1 . (10)



So, the boundedness of ∇x̃cϕ px̃cq is only possibly violated when x̃c Ñ `8. But, as

lim
x̃Ñ`8

∇x̃c
ϕ px̃cq “ lim

x̃Ñ`8

˜

x̃c ¨ ex̃`∆

pex̃`∆ ` 1q
2 ` 1

¸

“ lim
x̃Ñ`8

ˆ

x̃c

ex̃`∆ ` 1
¨

ex̃`∆

ex̃`∆ ` 1
` 1

˙

“ 0 ¨ 1 ` 1 “ 1 . (11)

Therefore, ∇x̃cϕ px̃cq is bounded on the whole domain, i.e., ϕpx̃cq of AdaShift-B holds Lipschitz continuity. This ensures
that Property 3 holds for AdaShift-B.

Similarly, for the extended case, we have:

∇x̃c
ϕ px̃cq “

Bsigmoid px̃c ` ∆q

Bx̃c
¨

B px̃c ` ∆q

Bx̃c
¨ x̃c ` sigmoid px̃c ` ∆q

ă

Bsigmoid
´´

1 `
9γc

N

¯

x̃c ` 9βc

¯

Bx̃c
¨

ˆ

1 `
9γc
N

˙

¨ x̃c ` 1

“
ep1`

9γc
N qx̃c` 9βc

ep1`
9γc
N qx̃c` 9βc ` 1

¨

˜

1 ´
ep1`

9γc
N qx̃c` 9βc

ep1`
9γc
N qx̃c` 9βc ` 1

¸

¨

ˆ

1 `
9γc
N

˙

¨ x̃c ` 1

“

´

1 `
9γc

N

¯

¨ x̃c

ep1`
9γc
N qx̃c` 9βc ` 1

¨
ep1`

9γc
N qx̃c` 9βc

ep1`
9γc
N qx̃c` 9βc ` 1

` 1 . (12)

Note that | 9γc| is a small value in common due to the L2 regularization applied on learnable parameters and N is typically a
relatively big value (i.e., | 9γc| ! N ). That is, we have:

lim
x̃Ñ`8

∇x̃c
ϕ px̃cq “ lim

x̃Ñ`8

¨

˝

Bsigmoid
´´

1 `
9γc

N

¯

x̃c ` 9βc

¯

Bx̃c
¨

ˆ

1 `
9γc
N

˙

¨ x̃c ` 1

˛

‚

“ lim
x̃Ñ`8

¨

˝

´

1 `
9γc

N

¯

¨ x̃c

ep1`
9γc
N qx̃c` 9βc ` 1

¨
ep1`

9γc
N qx̃c` 9βc

ep1`
9γc
N qx̃c` 9βc ` 1

` 1

˛

‚

“ 0 ¨ 1 ` 1

“ 1 . (13)

Therefore, ∇x̃cϕ px̃cq is also bounded, which ensures the Lipschitz continuity of ϕpx̃cq of AdaShift-B for the extended case.
This generalizes Property 3 of AdaShift-B for the extended case.

Intuition 4. OD: The assigned weights are expected to differentiate the positive and the negative candidates (while avoiding
gradient and feature vanishing or explosion).

Property 4. (OD) Dη P R and Dϵρ, δρ ą 0 such that if ϱ px̃q ą η ą ϱ pỹq, then, @ϱ px̃q ´ ϱ pỹq ą ϵρ we have ς pϱ px̃qq ´

ς pϱ pỹqq ą δρ. (Note that δρ is big enough to prevent gradient and feature vanishing)

Discussion. The core spirit of Property 4 is to prevent the gradient and feature vanishing after neural activation. It expects
the space of the difference of the upper-bound and lower-bound of a re-weighting function to be adequate.

Note that Property 4 is a relaxed constraint since the trainable parameters of a (recent) neural network layer (e.g., linear
layer and parametric normalization layer) are capable of providing an extent of flexibility to the (intensities of) features.

For AdaShift-B, where ρ px̃q “ sigmoid px̃ ` ∆q P p0, 1q , it is easy to satisfy the condition of Property 4, as

lim
px̃`∆qÑ`8

ς px̃ ` ∆q ´ lim
px̃`∆qÑ´8

ς px̃ ` ∆q “ 1 ´ 0 “ 1 . (14)

This shows that AdaShift-B holds Property 4.



C. Generalizing AdaShift by Varying ς: Discussion and Validation
C.1. Discussion

We suppose our AdaShift prototype and practical derivatives can be generalized to various options of self-gated re-weighting
functions (i.e., ς) different from vanilla Sigmoid function (e.g., ERF-based functions [10]). We identified this by referring
to the Property 1 (clarified in Appendix B, with its induced Proposition 1 proved in [3]) of the Multi-Criteria Decision-
Making (MCDM) interpretation [3] which is suggested to explain the meaning/mechanism of a ς in an MCDM-based feature
re-calibration process. That is, as a key, ς , the re-weighting function of activation, is expected to preserve the absolute
relationships of different approximated similarities.

To start, for (practical) AdaShifts, we have ϕ px̃q “ ς px̃ ` ∆q x̃, i.e., ϱ̂ px̃q “ x̃ ` ∆. More specifically, we consider
that ∆ “ ∆

´

X̃
¯

has a scalar output, e.g., the examples of AdaShift-B and -MA (presented by Equation (10) and Equation
(11) in Section 3.3), where ς is a Sigmoid function. For this case, the Property 1 has been proved to be satisfied (in part-1,
Appendix B, with an extended discussion) and expected to be generalizable to other ς with similar curve attributes (e.g., the
other three examples we demonstrate in this Appendix).

In particular, Property 1 indicates that the practical AdaShift derivatives are possibly generalized further by applying
various monotonic ς , besides the vanilla Sigmoid function.

C.2. Validation

For further verification, we hereby investigate the generalizability of our AdaShift prototype about self-gated re-weighting
functions with a targeted experiment on CIFAR-100 [12] using CIFAR-ResNet-56 [9, 25], where we compare the mod-
ified AdaShift-B(s) employing different ς with the counterparts of original popular/SOTA activation functions that pro-
pose/apply the corresponding ς , which include (1) GELU [10] with a ERF-based ς; (2) Mish [19] that suggested ς p¨q “

tanh psoftplus p¨qq; (3) a specialized control group, namely, TanhGate which we modified on the vanilla Tanh function,
where ς p¨q “ 0.5 ptanh p¨q ` 1q “ 1{1`e´2p¨q . Note that we use ReLU and Tanh as the baselines and also show the results of
the raw AdaShift-B (denoted by SiLU-Ada) with its counterpart model SiLU as a reference group.

Table 1 reports the comparative results of different groups of the AdaShift-B derivatives and the counterpart activation
functions, where we have two major observations: (1) although differing each other by different ς , the actual performances
of the original self-gated activation functions can be indistinguishable; (2) our original and the corresponding modified
AdaShift-B(s) improve different self-gated activation function counterparts significantly and consistently with only negli-
gible computational cost. These results validate the generalizability and effectiveness of our AdaShift prototype for discrim-
inative self-gated neural feature activation.

Table 1. Evaluation on the generalizability of AdaShift prototype using different self-gated re-weighting functions ς . Activation functions
with the suffix “-Ada” denote the modified AdaShift-B(s) that apply the corresponding ς .

Activation Prototype ϕ px̃q Re-weighting ς p¨q Backbone #Params. Top-1(%)Ò
ς px̃q x̃ ς px̃ ` ∆q x̃

ReLU [20] — — CIFAR-ResNet-56 0.6M 74.4˘0.3
Tanh — — 0.6M 72.3˘0.3

SiLU [8] ✓
sigmoid p¨q CIFAR-ResNet-56 0.6M 75.3˘0.4

SiLU-Ada ✓ 0.6M 76.5˘0.3

GELU [10] ✓
0.5 p1 ` erf p {̈

?
2qq CIFAR-ResNet-56 0.6M 75.3˘0.3

GELU-Ada ✓ 0.6M 76.3˘0.2

Mish [19] ✓
tanh psoftplus p¨qq CIFAR-ResNet-56 0.6M 75.2˘0.3

Mish-Ada ✓ 0.6M 76.6˘0.3

TanhGate ✓
0.5 ptanh p¨q ` 1q CIFAR-ResNet-56 0.6M 75.4˘0.3

TanhGate-Ada ✓ 0.6M 76.5˘0.3



D. Extended Ablation Study on AdaShift Prototype
We explained our main intuitions of the AdaShift prototype by rethinking a common Softmax-based classification process
in Section 3.2. In this Appendix, we further discuss the complementary intuitive properties that help ensure a discriminative
feature activation by extending the first ablation study (i.e., AdaShift prototype) introduced in Section 4.3 (Ablation Study).
To this end, we first conduct a tailored experiment and then identify the intuitive properties from the experimental results and
new observations. Specifically, we compare our AdaShift-B with two different sets of targeted control groups:
1. A series of Control Groups (CGs) of modified AdaShift-B(s) built on various prospective prototypes of activation func-

tions (specified in Table 2, have introduced in the first ablation study of Section 4.3).
2. A set of SOTA self-gated activation functions, including ACON-C [18], Meta-ACON [18], SMU-1 [2], and SMU [2],

constructed on a specialized self-gated prototype modified from the base prototype (Equation (1) in the manuscript):

ϕ px̃q “ ης pκx̃q x̃ ` εx̃ , (15)

where η, κ, and ε are trainable coefficients (e.g., SMU-1 [2], SMU [2], and ACON-C [18]) or content-aware modules
(e.g., Meta-ACON [18]).

Table 2. An extended ablation study on learnable activation prototypes, where ReLU is set as the baseline.

Activation Prototype Re-weighting ς p¨q Backbone #Params. Top-1(%)Ò

ReLU [20] — — CIFAR-ResNet-56 0.6M 74.4˘0.3

Proto-CG1 ϕ px̃q “ ς px̃q x̃

sigmoid p¨q

0.6M 75.3˘0.4
Proto-CG2 ϕ px̃q “ ς pκx̃q x̃ 0.6M 74.8˘0.2
Proto-CG3 ϕ px̃q “ ς p∆x̃q x̃ 0.6M 73.4˘0.3
Proto-CG4 ϕ px̃q “ ς pκx̃ ` ∆q x̃ CIFAR-ResNet-56 0.6M 73.7˘0.3
Proto-CG5 ϕ px̃q “ ς p∆1x̃ ` ∆2q x̃ 0.6M 73.6˘0.2
Proto-CG6 ϕ px̃q “ ς px̃ ` ∆q px̃ ` ∆q 0.6M 75.9˘0.3
Proto-CG7 ϕ px̃q “ ς px̃ ` ∆1q px̃ ` ∆2q 0.6M 76.2˘0.4

ACON-C [18]

ϕ px̃q “ ης pκx̃q x̃ ` εx̃

sigmoid p¨q

CIFAR-ResNet-56

0.6M 74.1˘0.3
Mt-ACON [18] 0.6M 75.7˘0.2
SMU-1 [2]

erf p¨q
0.6M 74.7˘0.2

SMU [2] 0.6M 74.9˘0.3

AdaShift-B ϕ px̃q “ ς px̃ ` ∆q x̃ sigmoid p¨q CIFAR-ResNet-56 0.6M 76.5˘0.3

In Table 2, we report the comparative results of different activation models on CIFAR100 [12] with CIFAR-ResNet-
56 [9, 25] backbone, where ReLU serves as the baseline. Note that
(1) all the compared methods in the set-1 use Sigmoid as the ς ;
(2) the ς of the SOTA self-gated activation functions in set-2 can be found in Table 2;
(3) ∆ denotes the proposed shift factor of AdaShift-B;
(4) in particular, ∆1 and ∆2 are assigned independently (i.e., employing independent parameters);
(5) κ is specified as channel-wise trainable parameters except for Meta-ACON [18] which learns SE-Net-style [11] channel

weights with a lightweight MLP;
(6) CG-1 and CG-2 are equivalent to SiLU [8] and Swish [21], respectively.
Our major observations and the supposed explanations are 4-fold:
a) AdaShift yields the highest accuracy among all the compared prototypes and SOTA self-gated activation models. This

validates the effectiveness of our AdaShift prototype.
b) CG6 which equals to ϕ px̃1q “ ς px̃1q x̃1, x̃1 “ x̃ ` ∆ improves CG1 and CG2 but leads to accuracy drops to AdaShift-B.

This demonstrates that (a) the tensor-level non-local cues are contributing to adaptive feature translations; (b) the
mismatch feature scoring problem of Act is hard to be eliminated by the direct adjustments on features outside ς
and instead, the adaptive adjustments on the re-weighting curve about the input features can be more effective.



c) CG7 which employs two ways of ∆(s) to shift features from both inside and outside of ς fails to improve AdaShift-B.
This validates that an activation process cannot cumulate the contributions led by the same non-local cues.

d) CG3, CG4, and CG5 which try to combine channel scalings with the ∆ factor fail to achieve practical improvements but
demonstrate significant accuracy drops to CG1, CG2, and AdaShift-B. This indicates that the raw x̃ can serve as an
informative anchor for ∆ to cast tailored adaptive adjustments on the feature re-weighting within the ς . Re-scaling
the raw x̃ can be interfering since disrupting the original connections of ∆ and x̃.

As auxiliary explanations of the contributing properties of our AdaShift prototype, we qualitatively compare it with
several important control groups that also leverage trainable parameters as follows.
1) Comparison with Swish [21] (i.e., CG-2). Swish facilitates a flexible Sigmoid-based re-weighting by adding channel-

wise scaling factors on the inputs. However, we identify a critical weakness in the flexibility led by this paradigm. That
is, although κ shows no limits on positivity or negativity, it can only be a positive or negative value for an individual
channel in an iteration or inference. This attribute constrains Swish-like functions to cast fine-grained adjustments on
different feature units within the same channel since we suppose that feature units of different spatial locations can have
highly differentiated importance scores as for re-calibrations. Specifically, as for a given channel-c, the re-weighting
driven by ς

´

X̃c

¯

“ sigmoid
´

κcX̃c

¯

is still monotonic about the raw input channel slice (i.e., matrix) X̃c P RHˆL,
therefore falling short in alleviating the critical mismatched feature scoring problem. We suppose this explanation can
be generalized to SOTA Swish-like functions that suggest different ς yet demonstrate close results, e.g., ErfAct [1] and
Pserf [1] (their results can be found in Table 3 in Section 4.2 of the manuscript, which are clearly inferior to our AdaShift-
B). In contrast, our AdaShift enables fine-grained flexible adaptive adjustments to different feature units in each channel
by leveraging an addable translation factor ∆.

2) Comparison with SOTA self-gated activation functions based on prototype 15. To our understanding, the main
change from functions of prototype 15 to Swish-like functions is the introducing of a leakage term εx̃ which casts feature
translations outside the re-weighting curve ς . However, this paradigm remains a critical weakness: The main re-weighting
process, i.e., ης pκx̃q preserves the monotonicity on the input x̃ while the leakage term εx̃ which translates feature outside
ς falls short in making use of the effective nonlinearity, thus resulting in limited feature adjustments.

Based on the above experimental results and qualitative analysis, we summarize our complementary intuitive properties of
an effective self-gated neural activation as follows. That is, we expect a self-gated activation function capable of:
(a) casting intense yet flexible changes on the inputs, i.e., capable of giving slight adjustments on the inputs while also

capable of drastically varying inputs from positive values to negative depending on the corresponding learning states;
(b) realizing fine-grained adjustments to the inputs, i.e., preserving the diversity of the intensities of feature units while

avoiding neutralizing the differences of feature units.
(c) constraining the (main) adjustments within the re-weighting process.

E. Auxiliary Ablation Study Using AdaShift-MA
In this Appendix, we conduct the corresponding supplementary ablation studies with AdaShift-MA as auxiliary investigations
of the effects of the AdaShift prototype.

Hypothesis: balanced summation of x̃ and ∆ (AdaShift-MA version). In this supplementary ablation study for part-2
of Section 4.3, we further investigate the hypothesis of balanced summation by comparing the original AdaShift-MA to the
abridged AdaShift-MA, i.e., Ada-MA-CG1 which replaces the post-LN with a vanilla parametric scaling-and-shift operation.
The implementation protocols are identical to other experiments on CIFAR-100.

Table 3 reports the comparative results, which we identify to be consistent with the corresponding phenomena reported in
the ablation study using AdaShift-B. This further validates the hypothesis.

Table 3. Ablation study on the hypothesis of imbalanced summation (AdaShift-MA version). We report the mean ˘ std of the Top-1.

Activation Backbone #Params. FLOPs Top-1(%)Ò

ReLU [20] CIFAR-ResNet-56 0.6M 90.7M 74.4˘0.3

Ada-MA-CG1 CIFAR-ResNet-56 0.6M 92.2M 76.3˘0.2

AdaShift-MA CIFAR-ResNet-56 0.6M 92.2M 77.0˘0.4



Table 4. Evaluation on the generalizability of AdaShift prototype using different self-gated re-weighting functions ς . Activation functions
with the suffix “-Ada-MA” denote the modified AdaShift-MA(s) that apply the corresponding ς .

Activation Prototype ϕ px̃q Re-weighting ς p¨q Backbone #Params. Top-1(%)Ò
ς px̃q x̃ ς px̃ ` ∆q x̃

ReLU [20] — — CIFAR-ResNet-56 0.6M 74.4˘0.3
Tanh — — 0.6M 72.3˘0.3

SiLU [8] ✓
sigmoid p¨q CIFAR-ResNet-56 0.6M 75.3˘0.4

SiLU-Ada-MA ✓ 0.6M 77.0˘0.4

GELU [10] ✓
0.5 p1 ` erf p {̈

?
2qq CIFAR-ResNet-56 0.6M 75.3˘0.3

GELU-Ada-MA ✓ 0.6M 76.8˘0.2

Mish [19] ✓
tanh psoftplus p¨qq CIFAR-ResNet-56 0.6M 75.2˘0.3

Mish-Ada-MA ✓ 0.6M 76.7˘0.2

TanhGate ✓
0.5 ptanh p¨q ` 1q CIFAR-ResNet-56 0.6M 75.4˘0.3

TanhGate-Ada-MA ✓ 0.6M 76.9˘0.3

Generalizing AdaShift by varying ς (AdaShift-MA version). In this supplementary ablation study for Appendix C, we
further validate the generalizability of our AdaShift prototype about self-gated re-weighting functions (i.e., ς), where the
setup strategies of the control groups are maintained.

In Table 4, we report the comparative results between different groups of the AdaShift-MA derivatives and their counter-
part activation models, where phenomena are consistent with the corresponding ablation study on the AdaShift-B derivatives.
This further validates the generalizability and effectiveness of the proposed AdaShift prototype.

Table 5. Ablation study on learnable activation prototypes. ReLU is set as the baseline.

Activation Prototype Re-weighting ς p¨q Backbone #Params. Top-1(%)Ò

ReLU [20] — — CIFAR-ResNet-56 0.6M 74.4˘0.3

Proto-MA-CG1 ϕ px̃q “ ς px̃q x̃

sigmoid p¨q

0.6M 75.3˘0.4
Proto-MA-CG2 ϕ px̃q “ ς pκx̃q x̃ 0.6M 74.8˘0.2
Proto-MA-CG3 ϕ px̃q “ ς p∆x̃q x̃ 0.6M 74.2˘0.3
Proto-MA-CG4 ϕ px̃q “ ς pκx̃ ` ∆q x̃ CIFAR-ResNet-56 0.7M 74.6˘0.2
Proto-MA-CG5 ϕ px̃q “ ς p∆1x̃ ` ∆2q x̃ 0.7M 74.4˘0.2
Proto-MA-CG6 ϕ px̃q “ ς px̃ ` ∆q px̃ ` ∆q 0.6M 76.4˘0.2
Proto-MA-CG7 ϕ px̃q “ ς px̃ ` ∆1q px̃ ` ∆2q 0.7M 75.8˘0.3

ACON-C [18]

ϕ px̃q “ ης pκx̃q x̃ ` εx̃

sigmoid p¨q

CIFAR-ResNet-56

0.6M 74.1˘0.3
Mt-ACON [18] 0.6M 75.7˘0.2
SMU-1 [2]

erf p¨q
0.6M 74.7˘0.2

SMU [2] 0.6M 74.9˘0.3

AdaShift-MA ϕ px̃q “ ς px̃ ` ∆q x̃ sigmoid p¨q CIFAR-ResNet-56 0.6M 77.0˘0.4

Ablation study on AdaShift prototype (AdaShift-MA version). In this supplementary ablation study for Appendix D, we
further validate our intuitions, design, and choice for the AdaShift prototype, where the setup strategies of the control groups
in Appendix D are maintained.

The comparative results are reported in Table 5, demonstrating that the main experimental phenomena closely align with



the counterpart ablation evaluations using AdaShift-B derivatives (in Appendix D). This further validates our intuitions and
design choices for the AdaShift prototype.

In addition, two new observations are obtained: (1) MA operations introduce accuracy gains on different counterparts
of AdaShift-B derivatives; (2) Proto-MA-CG6 outperforms Proto-MA-CG7 with reduced learning flexibility. The second
observation merits further investigation (in future work).

F. Implementation Recipe
F.1. ImageNet Classification

For fair comparisons, we adopt the basic CNN training-evaluation protocols [18, 29] for all the implemented ResNets and
MobileNetV2(s)/ShuffleNetv2(s), respectively.
1. For ResNets [9], we adopt the common data augmentation strategy [29] and basic SGD optimizer to train each imple-

mented model with the standard cosine scheduler through 120 epochs (including 5 linear warm-up epochs), where the
learning rate starts from 0.1 with a batch size of 256 by default and decays to 1ˆ10´5, gradually. The applied momentum
and weight decay are 0.9 and 1´4, respectively. We follow the common practice to stabilize the model weights by 10
cool-down epochs with the minimum learning rate 1 ˆ 10´5 after the main epochs.

2. For MobileNetV2(s) [22] and ShuffleNetv2(s) [17], we use SGD optimizer with a momentum of 0.9 and a weight decay
of 4 ˆ 10´5. The common recipe and data augmentation [17] are applied to train each model with the linear scheduler
with a batch size of 1024 by default, where the learning rate starts from 0.5 and decreases to 1ˆ 10´5 in 240 epochs (i.e.,
300k iterations as for the training set of ImageNet).

By following the common practice, we (1) train and test all the implemented models with an image size of 224 ˆ 224; (2)
report the results of our implemented models and the official results for the compared methods by Top-1 Accuracy with one
decimal place.

F.2. CIFAR-100 Classification

On CIFAR-100, we apply the same training-evaluation protocols suggested in [13] for CIFAR-ResNets [9, 25] with different
activation functions

For fair comparisons, we adopt the same standard training-evaluation protocols and data augmentations suggested in [13]
to train all the networks with our practical AdaShifts and the compared activation functions by a basic SGD optimizer with
the momentum of 0.9 and weight decay of 5 ˆ 10´4. Each model is trained for 350 epochs with a batch size of 256. The
learning rate starts from 0.1 and decreases to 1´6 by following the standard cosine learning rate schedule. All the input
images are fixed to the size of 32 ˆ 32 by following the common practice.

G. Supplementary Results on ImageNet Classification
G.1. Evaluation on Practical Efficiency

Table 6. Supplementary evaluation on practical efficiency using ResNet-50 backbone. The image throughput is measured on a single RTX
A6000 GPU with pure FP32 inputs with a batch size of 128.

Backbone Activation Function Image Resolution #Params. FLOPs
Throughput
(image / s)

ResNet-50 [9]

ReLU [20] 224 ˆ 224 25.6M 4.1G 1482.5
Swish [21] 224 ˆ 224 25.6M 4.1G 1476.1
IIEU [3] 224 ˆ 224 25.6M 4.2G 1242.6
Pserf [1] 224 ˆ 224 25.6M 4.1G 1045.3
SMU [2] 224 ˆ 224 25.6M 4.1G 1046.1

AdaShift-B (Ours) 224 ˆ 224 25.6M 4.1G 1352.8

Despite that SOTA activation functions often add slight parameters and theoretical computational overheads on the
ReLU [20] baseline, the actual burdens on practical throughput can be heavier. To discuss this phenomenon, we conduct



a supplementary experimental analysis on the practical efficiency (measured by throughput) by comparing our AdaShift-B to
SOTA activation functions on ResNet-50 [9] backbone, which include Swish [21], Pserf [1], SMU [2], and IIEU [3], where
we use ReLU as the reference with comparatively highest speed (due to the relatively simplest operations).

We report the comparative practical image throughput of different models in Table 6, where our AdaShift-B adds marginal
practical efficiency overhead on the ReLU baseline yet demonstrates competitive speed among SOTAs. It is worth noting
that AdaShift-B enjoys significant improvements over SOTA activation functions in accuracy (as detailed in Section 4). This
validates AdaShift for practical application.

G.2. Training with Advanced Recipe

In this Appendix, we demonstrate the further potential of practical AdaShifts, capable of boosting a standard CNN (i.e.,
ResNet [9]) to match/chase advanced vision Transformer counterparts of a similar level of parameters and FLOPs, by simply
replacing ReLU [20] in each of the corresponding layers and by applying an advanced 300-epoch recipe [26] for standard
CNN training (for fair comparisons). Unlike the basic 120-epoch CNN training procedure [29] adopted in the main ImageNet
experiments in Section 4.1, this new training procedure includes more diverse data augmentations and longer epochs, which
is similar to the most prevalent 300-epoch training procedure [24] for Vision Transformer(s).

In particular, by taking into account the accuracy-efficiency trade-off, we conduct this comparative evaluation with two
modified ResNet-50(s) enhanced by the targeted practical AdaShift derivatives: (1) AdaShift-B, i.e., the simplest practical
AdaShift and (2) a new Hybrid AdaShift derivative, namely, AdaShift-Hyb, which hybridly using a modified AdaShift-MA,
a modified AdaShift-B, and an original AdaShift-B to activate the feature maps outputted from the convolutional-layer-
1, -2, and -3 (with BN operated) of each building block, respectively. Note that (1) each (bottleneck) residual block has
three convolutional layers in total; (2) here, the modification to an AdaShift-B/-MA refers to adding a linear layer before
LN. So, the overall modifications to the residual block only bring SE-Net [11] level parameters and cost. Then, these two
AdaShift-enhanced ResNet-50(s) are compared with the representative Transformers, including ViT [7], PoolFormer [28],
and Swin-Transformer [15], where ViT is set as the baseline model.

Table 7 reports the comparative results on ImageNet, where we have three major observations: (1) AdaShift-B can boost
ResNet-50 to outperform ViT-B/16 and PoolFormer-S24 with a similar level of parameters and theoretical computational cost
(measured by FLOPs) while demonstrating superior practical efficiency (measured by throughput). (2) ResNet-50 enhanced
by AdaShift-B approaches the strong Swin-T in accuracy with fewer parameters, lower theoretical FLOPs, and notably higher
practical speed. (3) AdaShift-Hyb enables ResNet-50 to outperform Swin-T with lower cost and higher efficiency.

This demonstrates the critical potential and meaning of effective neural feature activation and validates our intuitions and
design of AdaShift for learning improved self-gated neural activation models.

Table 7. Comparison of AdaShift-enhanced ResNet-50(s) to representative vision Transformer counterparts. “E” denotes the improved
ViT trained with an extra regularization [23]. The practical image throughput is measured on a single RTX A6000 GPU with pure FP32
inputs with a batch size of 128.

Network Activation Function Image Resolution #Params. FLOPs
Throughput

Top-1(%)Ò
(image / s)

ViT-B/16 [15]E GELU [10] 224 ˆ 224 86.6M 16.9G 775.6 79.7
PoolFormer-S24 [28] GELU [10] 224 ˆ 224 21.4M 3.5G 1144.6 80.3
Swin-T [15] GELU [10] 224 ˆ 224 28.3M 4.5G 1052.2 81.3

ResNet-50 [9] AdaShift-B (Ours) 224 ˆ 224 25.6M 4.1G 1352.8 80.8
ResNet-50 [9] AdaShift-Hyb (Ours) 224 ˆ 224 28.2M 4.2G 1201.6 81.7

G.3. Evaluation on Lightweight Backbone

As a supplementary experiment on ImageNet [6] classification, we evaluate our AdaShift design by comparing the practical
AdaShift-MA with other popular/SOTA activation functions with two lightweight networks, i.e., MobileNetV2 [22] and
ShuffleNetv2 [17], where the baseline networks are activated by ReLU [20] function and we show the improvements in Top-
1 accuracy of our method over the ReLU baselines in “p`¨q”. We report the implemented results for our AdaShift-MA and



the official results for other compared models, respectively. Note that the basic training-evaluation protocols adopted in this
evaluation are described in the configure 2, Appendix F.1.

report the comparative results, where our practical AdaShift achieves clear accuracy improvements over all the other
compared models with negligible parameters added on the ReLU baselines. These phenomena are in line with the main
evaluations on ResNets with different sizes (demonstrated in Section 4 of the manuscript). This validates the scalability of
our AdaShift to various types of neural networks.

Table 8. Comparison of different activation functions with ShuffleNetv2 1.0ˆ [17] backbone on ImageNet.

Backbone FLOPs Activation ReLU [20] Mish [19] Mt-ACON [2] SMU-1 [2] SMU [2] AdaShift-MA

ShuffleNetV2 1.0ˆ [17] 153.5M
#Params. 2.3M 2.3M 2.6M 2.3M 2.3M 2.3M

Top-1(%)Ò 69.4 70.5 72.1 71.2 71.9 72.3(+2.9)

Table 9. Comparison of different activation functions with MobileNetV2 [22] 1.0ˆ backbone on ImageNet. “N/A” denotes non-applicable
(i.e., not mentioned in the official publication.)

Backbone FLOPs Activation ReLU [20] ACON-C [2] Mt-ACON [2] PWLU [30] AdaShift-MA

MobileNetV2 1.0ˆ [22] 320.3M
#Params. 3.5M 3.6M 3.9M N/A 3.6M

Top-1(%)Ò 72.1 73.6 75.0 74.7 75.7(+3.6)

G.4. Practical AdaShift For MetaFormer-Like Networks

In Section 3.3, we clarified that AdaShift-B and -MA were tailored to normalized activation inputs (otherwise encountering
the imbalanced summation problem), hence unsuitable for MetaFormer layers where the activation inputs are commonly
un-normalized in Feed-Forward-Networks (FFNs). To this end, we introduce a new version of practical AdaShift, which
we refer to as AdaSfhit-X, modified from AdaShift-MA yet focusing on enhancing MetaFormer-style layers that encode
features with FFNs. Specifically, as a main change, AdaSfhit-X adds a post-linear-projection at the top of MA-based ∆ to
avoid imbalanced summation when casting adaptive translations on un-normalized FFN inputs. Note that this extra projection
may be removable if applied on typical Transformers that naturally possess the post-linear-projections in the token mixers
(such that only adds negligible parameters).

By taking into account the computational resource constraints, we choose to evaluate this new AdaShift derivative with
ConvNext-T [16], a highly efficient advanced ConvNet inspired by MetaFormer architecture with a close size to ResNet-50
but way stronger. We report the evaluation results in Table 10, where ConvNext equipped with AdaShift-X enjoys significant
improvements in accuracy on the original GELU-based counterpart (taking into account the diminishing returns effect on
a strong network backbone). It is worth noting that our AdaShift-X, to the best of our knowledge, is the first and only
existing activation function that can add practical accuracy gains (i.e., ě 0.3%) on advanced MetaFormer-like net-
works (originally using GELU [10] activation in common). This validates the versatility and scalability of our AdaShift
prototype.

Table 10. ImageNet evaluation of AdaShift-X on ConvNext-T [16]. The practical image throughput is measured on a single RTX A6000
GPU with pure FP32 inputs with a batch size of 128.

Backbone FLOPs Activation Function Image Resolution #Params.
Throughput

Top-1(%)Ò
(image / s)

ConvNext-T [16] 4.5G
GELU [10] 224 ˆ 224 28.6M 1220.1 82.1

AdaShift-X (Ours) 224 ˆ 224 32.0M 1075.3 82.8



G.5. Convergence Attribute

We show the convergence curves of ResNet-14(s) and -26(s) [9] enhanced by our AdaShift-B, AdaShift-MA, and other
baseline/popular/SoTA activation functions. Note that each model is trained by the basic 120-epoch recipe (introduced in
Appendix F.1) from scratch to convergence, respectively.

Figure 3 depicts the convergence trends in Top-1 accuracy (the higher the better) and training loss (the lower the better) of
the ResNet-14 and ResNet-26 equipped with our IIEUs and other activation functions, respectively, where ReLU networks
are the baselines. Our AdaShift-B and AdaShift-MA achieve the relatively highest Top-1 accuracies and lowest loss values
over the varying of epochs. This validates the favorable convergence attributes of our activation models.
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Figure 3. Top: the accuracy curve (left) and loss curve (right) of ResNet-14 backbone with different activation models. Bottom: the
accuracy curve (left) and loss curve (right) of ResNet-26 backbone with different activation models.

G.6. Fine-tuning

In this Appendix, we conduct a special experiment to further investigate the generalizability and scalability (compatibility)
of AdaShift activation process, where we fine-tune the AdaShift-B-enhanced ResNet-50 [9] network on the raw ResNet-
50 backbone which uses ReLU activation. It is worth noting that AdaShift-B and ReLU may yield significantly different
activation outputs for the same inputs, and AdaShift-B includes parameters (i.e., LN) to be updated and these parameters
cannot find useful weights from the raw ResNet(-50). We suppose this to be a critical challenge for fine-tuning.

In this experiment, we consider four different experiment settings which are the combinations of the two epoch settings
for training (30-epoch and 45-epoch, respectively) and two settings for initial learning rate (0.05 and 0.03 for mini-batch of



256, respectively).
Table 11 reports the experimental results of different fine-tuning settings, where we have four major observations: (1)

Without fine-tuning, AdaShift-B ResNet-50 that directly loads the trained raw ResNet-50 model weights yields extremely
low results. (2) AdaShift-B ResNet-50 with each designated fine-tuning setting can outperform the raw ReLU ResNet-50
significantly. (3) Different learning rates of 0.05 and 0.03 can lead to close final accuracies (this demonstrates the training
adaptability of the model) (4) The network performance can be improved by stretching the fine-tuning epochs. In particular,
with only 45-epoch fine-tuning, AdaShift-B ResNet-50 approaches the original results of AdaShift-B obtained by the 120-
epoch training from scratch.

This further validates the generalizability and compatibility of AdaShift for neural activation.

Table 11. Fine-tuning evaluation of AdaShift-B ResNet-50 on ReLU ResNet-50. “FT” denotes “Fine-tuning;” “Init” denotes “Initial;”
“LR” denotes “Learning Rate.” “W/o,” “W/,” and “Orig” denote “Without,” “With,” and “Original,” respectively.

Activation Backbone Image Size #Params. FLOPs
FT Epochs Init LR

Top-1(%)Ò
30 45 0.03 0.05

ReLU [20] ResNet-50 [20] 224 ˆ 224 25.6M 4.1G —— —— 77.2

AdaShift-B (W/o FT) ResNet-50 [20] 224 ˆ 224 25.6M 4.1G —— —— 11.3

AdaShift-B (W/ FT) ResNet-50 [20]

224 ˆ 224 25.6M 4.1G ✓ ✓ 79.2
224 ˆ 224 25.6M 4.1G ✓ ✓ 79.1
224 ˆ 224 25.6M 4.1G ✓ ✓ 79.5
224 ˆ 224 25.6M 4.1G ✓ ✓ 79.7

AdaShift-B (Orig) ResNet-50 [20] 224 ˆ 224 25.6M 4.1G —— —— 79.9

G.7. Visualization

In this Appendix, we show a visualized example of activation map, consisting of 256 channels, extracted from the learning
hierarchy-1 of AdaShift-B ResNet-50 [9]. The raw input image and the generated activation map (displayed by channels) are
shown in Figure 4 and Figure 5, respectively, where we observe that the activation map concentrates on different informative
textures and patterns and extracts them in different channels with rich details.

Figure 4. The raw input image (from the validation set of ImageNet) of the extracted activation map.



Figure 5. Visual example of the activation channels extracted from the learning hierarchy-1 of AdaShift-B ResNet-50.

H. KITTI-Materials Road Scene Material Segmentation
Implementation details. We conduct a supplemental experiment to evaluate the versatility and generalizability of our prac-
tical method by comparing AdaShift-B with popular/SOTA activation functions on KITTI-Materials [4] road scene material
segmentation, different from the prevailing object recognition problems, serving as a prospective base task for downstream
applications related to materials in road scenes. To ensure fair comparisons, we adopt the official training and evaluation
configures [4] with a common framework composed of ResNet-50 encoder [9] and the multi-level All-MLP segmentation
head [27].

Experimental results. Table 12 demonstrates the comparative results of different popular/SOTA activation functions and



the ReLU baseline, where our AdaShift-B outperforms compared methods by a clear margin. This validates the versatility
and generalizability of our practical design.

Table 12. Comparison of popular/SOTA activation functions on KITTI-Materials [4] road scene material segmentation.

Activation Function Encoder SegHead #Params. mIoU(%)Ò

ReLU [20]

ResNet-50 [9] All-MLP [27]

31.7M 40.2
Mt-ACON [18] 31.9M 41.7
SMU [2] 31.7M 40.6
Swish [21] 31.7M 41.2

AdaShift-B (Ours) ResNet-50 [9] All-MLP [27] 31.7M 42.2

I. MS COCO Object Detection
Implementation details. In this Appendix, we aim to further demonstrate the versatility and generalizability of our generic
activation prototype, i.e. AdaShift, for various vision tasks. To this end, we evaluate AdaShift-B on MS COCO [14] object
detection by comparing it with the ReLU [20] baseline and other popular/SOTA activation functions, i.e., Meta-ACON [18],
SMU [2], IIEU [3], Swish [21]. For fair comparisons, we apply the default implementation procedure (1ˆ schedule) in
MMDetection toolbox [5] and report the results on the standard evaluation metrics, i.e., mAP as the primary metric of
averaged precisions and AP50, AP75, APS , APM , APL as the specific APs at different scales. We use a popular efficient
detector RetinaNet that extracts feature maps with ResNet-50 encoders equipped with different activation functions, each
of which is applied with their corresponding ImageNet pre-trained weights. By following the common practice, we ensure
reproducibility by keeping on the deterministic mode in each implementation. Note that we report the official results for
Meta-ACON as our re-implemented results are lower, possibly led by the different implementation environments.

Experimental results. The experimental results are shown in Table 13, where our AdaShift-B achieves significant gains
in accuracy over different popular/SOTA activation functions. It is worth noting that the highly consistent and significant
improvements over the baseline and popular/SOTA activation functions on various vision benchmarks verify the strong
versatility and generalizability of AdaShift for effective self-gated neural activation.

Table 13. Comparison of different activation functions on COCO [14] object detection.

Activation Function Encoder #Params. FLOPs mAP (%)Ò AP50(%)Ò AP75(%)Ò APS(%)Ò APM (%)Ò APL(%)Ò

ReLU [20]

ResNet-50 [9]

37.7M 238.9G 36.7 56.0 39.3 21.0 40.2 48.2
IIEU [3] 37.7M 239.0G 38.2 58.2 40.6 23.2 42.1 49.2
SMU [2] 37.7M 238.9G 37.5 56.6 40.2 21.5 41.5 48.4
Mt-ACON [18] 37.9M 238.9G 36.5 55.9 38.9 19.9 40.7 50.6
Swish [21] 37.7M 238.9G 37.2 56.3 39.9 21.0 41.1 47.8

AdaShift-B (Ours) ResNet-50 [9] 37.7M 238.9G 38.8 58.8 41.5 22.4 42.9 50.0
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