
Digital Life Project: Autonomous 3D Characters with Social Intelligence

Supplementary Material

A. Overview of the Supplementary Material
We provide more details of DLP, such as the method (Ap-
pendix B), the DLP-MoCap dataset (Appendix C), the ex-
periments (Appendix D) and additional discussions (Ap-
pendix E).

Demo Video. We produce a video demonstration1 of
DLP. In addition to “<motion>”, explore using the
“<speech>” token to generate audio with OpenAI’s text-
to-speech engine, followed by Talkshow [54] to synthesize
face movements.

B. Additional Details of DLP
B.1. Scene

We aim to build 3D characters that articulate with 3D body
motions in a 3D scene. In this work, we design our scene to
achieve a diverse combination of relative interaction poses:
1) the center or bookshelf for the cases when both charac-
ters are standing (standing-standing interaction), 2) a sofa
for side-by-side seated interaction, 3) a dining table for
face-to-face seated interaction, and 4) a computer desk for
standing-seated interaction. For each piece of interactable
furniture, we designed spots with positions and facings to
guide navigation and human-scene interaction. Note that
we focus on human-human interaction in this work and
substantially simplify the human-scene interaction to basic
ones such as “sitting down on a chair” or “standing up from
a sofa”.

B.2. Movement Synchronization

A significant challenge of extending single human motion
synthesis to interactive motion synthesis is coordinating
multiple characters. Although our Active-passive Mech-
anism ensures the interaction is naturally aligned through
retrieving from a curated motion database, we need to ac-
commodate potential mismatches in motion lengths when
the characters navigate from one place in the scene to an-
other. As shown in Fig. 1, each interaction (interactive mo-
tion pair) requires four steps to synchronize the character’s
motions.
• Behave. In this stage, the active character generates ac-

tive behavior from its SocioMind and synthesizes both
active and passive motions with MoMat-MoGen. The
passive motion is passed to the passive character. Since
the behavior contains “<place>” token for the location

1https://youtu.be/rj0QEdGbSMs

information (e.g., desk or sofa), both characters will reg-
ister their current position as the starting position with the
multi-agent pathfinder [45]. Note that at this stage, there
are no paths planned or actual motion executed yet.

• Move. The multi-agent pathfinder computes collision-
free trajectories for both characters. Motion matching is
used to synthesize the walking paths if there is a loca-
tion change. For a more complicated case that involves
a change in the basic motion state (e.g., from a standing
pose in center to a seated pose in sofa), there will be addi-
tional motion inserted in front (e.g., standing up) or after
(e.g., sitting down) the walking trajectory.

• Align. Depending on the starting positions of the char-
acters, the movements typically take a different number
of frames for each character. Hence, an alignment is
conducted: two characters communicate with each other
about their trajectory, and the character with a shorter tra-
jectory has a filler motion (an idle motion) inserted at the
end of its trajectory, depending on its basic state (seated
or standing).

• Synthesize. Movement motions are concatenated with
the interaction motions. Motion blending is applied to
ensure a smooth transition between motion clips.

B.3. Retargeting

In this work, the proposed MoMat-MoGen module could
produce high-quality motions in SMPL-X [36] format. To
better demonstrate the physical and mental interaction be-
tween our social agents in an immersive simulation sce-
nario, two rigged characters are used: a male named Zhixu
and a female named Xiaotao. The synthesized motions are
retargeted to the target avatar in Blender using a widely used
retargeting tool Auto-Rig Pro [50]. In order to bridge the
gap between different skeletons, the bone mapping between
different structures is manually configured for the best per-
formance. In addition, we rescale the target avatars to have
the identical height as SMPL-X models to avoid any notice-
able foot skating and preserve body contact for the interac-
tion between the two characters. Note that the retargeting
pipeline can be extended to more characters in the future.

B.4. Motion Matching

Our motion matching process consists of two steps. Firstly,
we incorporate semantic information by utilizing a pre-
trained LLM [27] to extract a text embedding ft ∈ R1024

for the query text. Secondly, to enhance coherence and
alignment with the query trajectory, we incorporate kine-
matics features. Specifically, for a motion with k frames,
the kinematics features are defined as x = {t f b h p} ∈

https://youtu.be/rj0QEdGbSMs
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Figure 1. Movement synchronization. Each behavior results in an interactive motion pair, that consists of individual movements in the
scene and interaction between two characters. To allow characters to navigate in the scene while maintaining synchronization, there are four
stages in the motion synthesis process. The crown indicates the active character status, which may or may not swap between characters.
APM stands for Active-Passive Mechanism. Main Paper Fig. 2 depicts mainly the behave stage.

R5k+193, where t ∈ R2k represents the trajectory position
projected on the ground, f ∈ R3k denotes the facing di-
rection, b ∈ R189 represents the 6D space rotation and the
position of 21 joints, h ∈ R indicates the hip height, and
p ∈ R3 represents the relative position of other characters.
The trajectory positions t and facing f align the resulting
motion with the query trajectory, the body-pose features b
improve body-pose coherence with a higher emphasis on
foot weighting, the hip height h distinguishes seated mo-
tion from standing motion, and the relative position p aligns
with other characters. During motion matching, the query
trajectory obtained from the path-finding algorithm is used
to calculate trajectory similarity T and facing similarity F ,
while the current pose is used to calculate body-pose simi-
larity B, hip similarity H, and relative position similarity P .
Euclidean distance is used for all similarities except for fac-
ing similarity, which employs cosine distance. These simi-
larities are normalized using Z-score normalization, and the
final similarity S is obtained as a weighted sum of these
similarities.

B.5. Motion Generation

Our proposed Dual Semantic-Modulated Attention
(DSMA) module is built upon the SMA module in Re-
MoDiffuse [57]. The major difference is the introduction
of motion interaction. The architecture is shown in Fig. 2.
To get the refined feature f̂x , we integrate four sources of
features: 1) independent motion feature motion fx from the
same sequence; 2) twin motion feature fy from the partner
sequence; 3) text feature px from the given description Px;
4) reference feature rx from the motion matching results
Mx. In addition, We share parameter weights of DSMA
modules and FFN modules to process both actors’ motion
sequences.

Figure 2. Architecture Detail of Dual Semantic-Modulated At-
tention (DSMA) module.

B.6. SocioMind

In this section, we illustrate the details of each module
in SocioMind, along with the corresponding prompt tem-
plates. We introduce the definition of psychological states
in Appendix B.6.1, the construction of persona instructions
in Appendix B.6.2, events and thoughts within the mem-
ory system in Appendix B.6.3, prompts for short-term com-
munication in Appendix B.6.4, psychological reflections in
Appendix B.6.5, and the details of the topic proposal mech-
anism in Appendix B.6.6.

B.6.1 Psychological States

Determining whether a 3D character qualifies as a digital
life with social intelligence remains an open problem. From
a psychological perspective, humans are composed of inter-



nal psychological processes (mind, such as thoughts, emo-
tions, etc.) and external behaviors [19]. Through prolonged
studies on the association between internal processes and
external behaviors, psychologists have developed various
theories, including Big Five Trait [21] on personality, PAD
model [30, 43] on emotion, hierarchy of needs [29] and
long-short term theory [49] on motivation, self-schema [16]
on core self, episodic and semantic system [3] on mem-
ory, attitude [6], intimacy [31], supportiveness [7, 8] and
trust [40, 42] on social relationships. Herein, we intro-
duce the psychological states in our SocioMind, enabling
the simulation of controllable human communicative be-
haviors. The psychological states are as follows:

• For personality, we use Big Five Trait model [21], which
comprises five dimensions: openness (O), conscientious-
ness (C), extraversion (E), agreeableness (A), and neuroti-
cism (N). Users can provide numerical values for these
five dimensions (Likert scale, ranging from 1 to 9) or tex-
tual descriptions. The personality is set initially.

• For emotions, we choose the PAD model [43], commonly
used in body language [11] and animations [32], consist-
ing of three dimensions: pleasure (how positive or nega-
tive), arousal (level of mental alertness and physical ac-
tivity), dominance (amount of control and influence) in a
Likert scale from 1 to 9.

• In terms of motivation, we apply long-term and short-
term motivations as propose by Robin et al. [49]. Long-
term motivations are specified in the initial setting.

• For the self, we emphasize central beliefs, reflecting an
individual’s worldview [16].

• For social relationships, we introducing three dimensions
based on social support theory [7, 8], social trust the-
ory [40, 42], and research on intimate relationships [31]:
trust, intimacy, and supportiveness in a Likert scale from
1 to 9. Additionally, we configure an attribute represent-
ing the attitude towards others with text description.

Fig. 3 is an example of a character’s psychological states.
All psychological states can be defined in textual form,
wherein personality, emotions, and social relationships can
also be delineated through quantifiable values. Users can
define a character’s personality, emotions, and social rela-
tionships either through text or by adjusting the numerical
values of corresponding variable dimensions. In subsequent
reasoning based on LLM, both text and numerical descrip-
tions serve as inputs to the LLM as prompts. The trans-
formation between text and numerical values is facilitated
through LLM. For instance, we use the LLM to translate
the numerical values of emotion dimensions into text de-
scriptions based on the PAD [43] model. The form of the
prompt is as follows:

Young Jack

Personality

A 10-year-old child, who is stubborn, willful, playful, 

optimistic, not sensible, does not like the discipline of his 

parents, and hates study.

O: 6   C: 2   E: 5   A: 3   N: 4

Emotion

Confused and curious

Pleasure: 3 Arousal: 5 Dominance: 5

Motivation

Long-term

Just for fun, such as eating delicious food, playing 

computer games, and getting love from parents.

Short-term

Null

Central Belief
Sometimes if I make a fuss, my parents will satisfy 

my needs. Home is a warm place. There are ghosts and 

gods in this world. Things are either black or white, good 

or bad.

Relationship towards Old Jack 

Young Jack felt confused, scared, and curious, and 

kept a certain distance.

Attitude

Yong Jack felt confused, curious and afraid of the familiar 

yet unfamiliar middle-aged man in front of him.

Intimacy: 2 supportiveness: 2 trust: 1

Figure 3. An example of the psychological states of an au-
tonomous character, Young Jack. The background is ‘Old Jack
traverses through time and engages in communication with his
younger self.’

Prompt for translating numerical values into text

Assume you are a very professional psychologist.
This is a quantitative evaluation of a person: [plea-
sure: 3, arousal: 5, dominance: 4]. The evalu-
ation based on the PAD theory of psychology and
Likert scale (1-9), score on pleasure, arousal and
dominance. Based on the score, describe the emo-
tion of the person. According to Paul Ekman’s basic
emotion theory, human have basic emotions: wrath,
grossness, fear, joy, loneliness, shock, amusement,
contempt, contentment, embarrassment, excitement,
guilt, pride in achievement, relief, satisfaction, sen-
sory pleasure, and shame.
So the description should be:

And the result may be:

Output

Mild dissatisfaction or discontentment, coupled
with a sense of alertness but not empowerment.



Instrument Alpha Key Text Label

16PF 0.8 1 cheer people up warmth

6FPQ 0.69 1 don’t care what others think independence

TCI 0.72 -1 feel short-changed in life satisfaction

VIA 0.70 -1 take advantage of others equity/fairness

A person with high warmth tends to behave/think: cheer people up

A person with low satisfaction tends to behave/think: feel short-changed in life

…

IPIP Psychological Test

Persona Instructions

Figure 4. Illustration of our reverse approach to transfer the psy-
chological test into persona instructions. In the table of IPIP, ‘in-
strument’ is the name of the personality inventory, ‘alpha’ is the
Cronbach alpha reliability [48], ‘key’ is the keyed direction (+1
for positive and -1 for negative) of the item and its associated con-
struct, the text is the behavior item, and ‘label’ is the trait dimen-
sion.

B.6.2 Persona Instructions

To enhance the LLM’s capability in reasoning the coherent
association between internal psychological processes and
external behaviors, we construct the persona instruction
database from psychological tests. Persona instructions
serves as few-shot exemplars for Chain of Thought (CoT)
reasoning to generate plausible behaviors aligned with hu-
man expectations. In International Personality Item Pool
(IPIP) [9, 10, 46], an open-source psychological tool, its
original data illustrate how external behaviors can be trans-
lated into quantifiable psychological metrics. As shown in
Fig. 4, through a reverse approach, we represent each item
in IPIP as a persona instruction: “A person with extent trait
dimension tends to behave/think: behavior”, where extend
is ‘high’ when key is 1, and ‘low’ when key is -1. In short-
term communication, we retrieve the most relevant persona
instructions by the similarity of the text embeddings from
function ϕ [33] with current behaviors and psychological
states as part of the prompt.

B.6.3 Events & Thoughts

Following the framework of the cognitive language
agent [35, 47] , there are two types of episodic memo-
ries within our memory system: ‘events’ and ‘thoughts’.
Events represent occurrences or facts perceived by the
agent, whereas thoughts are ideas, musings, or attitudes
generated by the agent based on its personality and past ex-
periences. The memory system of Generative Agents be-
comes larger with time, which poses challenges for retriev-
ing the most relevant events and thoughts [35]. Inspired by
human memory system [12], we introduce mechanisms for
memory reinforcement and forgetting to alleviate this issue.

Each event or thought in our memory system has parameters
such as poignancy pm (ranging from 1 to 9), text description
Dm, keywords, and the accessed times Nm. To ensure the
efficiency of our memory system, we introduce a forgetting
mechanism. Initially, we utilize the Ebbinghaus forgetting
curve [2, 12] to calculate the forgetting rate r:

r = [a+ (1− a) · e−k· ∆T

2Nm ·pm ], (1)

where ∆T represents the time elapsed (the number of in-
tervening episodes) since the last recollection, a and k are
hype-parameters. When r falls below the threshold Tf , the
event or thought will be forgotten and not retrieved.

During memory retrieval, we combine content similarity
and the forgetting rate to compute the final score:

s(Db, Dm) = cos(ϕ(Db), ϕ(Dm)) · r (2)

where cos(ϕ(Db), ϕ(Dm)) denotes the similarity between
the current behavior b and the memory item m (event or
thought) using text embedding function ϕ [33]. We retrieve
the top M memory items as prompt input, enabling the
avatar to learn interaction strategies from past experiences.

B.6.4 Short-Term Communication Generation

Human responses to external stimuli are influenced on
one hand by external environmental factors (episode back-
ground, interactive behavior contexts), and on the other
hand by internal factors (psychological states, relevant
memories, and topics). The correlation between behavior
and psychology also follows certain patterns (persona in-
structions). Therefore, to generate interactive behaviors au-
tonomously, we feed LLMs with these factors for reason-
ing human-like behaviors. The specific prompt is shown in
Fig. 5. In this paper, the use of ALL CAPITAL LETTERS
signifies the reference to the complete textual description
corresponding to the respective names. And a possible re-
sponse from LLM is:

Output

<speech> Old Jack, do you think that mem-
ories are like ghosts? They can’t be seen but
they linger with us, bringing both joy and
sadness.<motion>Tracing fingers on book-
shelf<place>bookshelf

The format of the output results may not align with the
target format. In such instances, we use LLMs to reformat
the output.



Prompt for generating behaviors

{“role”: “system”, “content”: “Let’s do a role play. Assume you are a person named Young Jack (SELF NAME).
I’m a person with name Old Jack (SELF NAME).
In this episode, you have such psychological states:
Personality: stubborn, willful, playful, ...; Emotion: confused and curious, pleasure: 3, ...; Motivation: just for fun,
such as eating delicious food, ...; ...(PSYCHOLOGICAL STATES)
The episode background is:
Old Jack decides to share his regrets with Young Jack about not being able to spend more time with his mother before
she passed away. (BACKGROUND)
The topics you want to start are:
regret of limited time with mother. (TOPICS)
Now start our conversation.”}
{“role”: “assistant”, “content”: “<speech> Hello!<motion>waving hands<place>sofa”}
{“role”: “user”, “content”: “<speech> Hi!<motion>stand up<place>sofa”}
......
{“role”: “user”, “content”: “ <Memories hold joy and pain.> Hi!<motion>lean back against the book-
shelf<place>bookshelf”}
(BEHAVIOR CONTEXT)

{“role”: “user”, “content”: “You have such relevant memories:
Mom told Young Jack there were ghosts;The old man wanted to share photos with him.(RELEVANT EVENTS &
THOUGHTS)
Psychological research has found such principles:
A person with high curiosity tends to behave/think: seek explanations of things.(PERSONA INSTRUCTIONS)
Now you have two options: end the conversation by output ‘END’ or respond based on the information above. So
your reaction is:

Figure 5. Prompts for generating interactive behaviors in short-term communication. The use of ALL CAPITAL LETTERS signifies the
reference to the complete textual description corresponding to the respective names in this paper.

B.6.5 Psychological Reflection

Prompt for summarizing events

Assume you are a person named NAME. You have
such psychological states:
PSYCHOLOGICAL STATES
Psychological research has found such principles:
PERSONA INSTRUCTIONS
Now you have a conversation and the contexts are
as follow:
BEHAVIOR CONTEXTS
Based on the dialog above, summarize the key
events and output the event list.

Psychological research reveals that humans possess a re-
flection system, wherein the brain learns from past events,
gradually altering its beliefs and attitudes towards oth-
ers [1, 6, 7, 40]. Although Generative Agents [35] adopts
a reflection mechanism, it does not adequately consider the
multiple factors on a character’s long-term social intelli-

gence, such as attitudes, intimacy, beliefs, and motivations.
Consequently, it can not finely simulate the social evolu-
tion process between two characters. Therefore, we have
developed a hierarchical system of reflection to mimic psy-
chological processes. After each episode, we use LLMs to
summarize the events from the communication (Prompt for
summarizing events). One example of the output is:

Output

[{ “description”: “Young Jack asks Old Jack about
the bookshelf and shows curiosity about the mem-
ories”, “keywords”: [“bookshelf”, “curiosity”,
“memories”], “poignancy”: 7, “emergency”: 4},
...]

Then the brain generates its own new thoughts based on
current events and relevant past events and thoughts. The
structure of ‘thought’ is fundamentally similar to that of
‘event’ in our memory system, with the key distinction ly-
ing in its integration of past events and thoughts to generate



new thoughts. Based on these events and thoughts, the brain
update its motivations, central belief, and social relation-
ships, thus resulting in social evolution on internal states.
For instance, the brain updates the social relationship with
prompt:

Prompt for summarizing events

Assume you are a very professional psychologist.
Here is a person named NAME. He/She has such
psychological states:
PSYCHOLOGICAL STATES
Psychological research has found such principles:
PERSONA INSTRUCTIONS
Recent he/she have come across these events and
the following thoughts have arisen:
EVENTS & THOUGHTS
His/Her previous relationship with PARTNER
NAME is: SOCIAL RELATIONSHIP
Output the relationship according to social psycho-
logical theory in three dimensions: trust, intimacy,
and supportiveness.

The updated social relationship would be:

Output

{ “description”: “They are getting to know each
other”, “intimacy”: 3, “trust”: 4, “supportive-
ness”: 2, “attitude”: “curious”}

B.6.6 Planning with Topic Proposal

To build the long-term evolution of external behaviors, we
propose a planning module with topic proposal mecha-
nism to promote the development of storylines. This ap-
proach is partly inspired by the psychological evolution of-
ten linked to significant events [19] and partly by techniques
used in movies and dramas to progress narratives. Initially,
the brain correlates past experiences with newly occurring
events to propose topics for the next scene. At this stage, we
also allow users to manually incorporate events not gener-
ated within the interaction, such as fragments of past mem-
ories and contemporary news events.

Prompt for proposing topics

Here is a person named NAME. He/She has such
psychological states:
PSYCHOLOGICAL STATES
Psychological research has found such principles:
PERSONA INSTRUCTIONS
The person has experienced these stories:
EPISODE BACKGROUNDS
Recent he/she have come across these events:
CURRENT & MANUAL EVENTS
From the memory, he/she has such relevant events
and thoughts:
RELEVANT EVENTS & THOUGHTS
Based on the information above, generate a list of
topics that he/she would like to start to talk.

One of the examples of the topics are:

Output

[{ “description”: “Sneaking in some extra time on
CS Go”, “poignancy”: 7, “emergency”: 6,}, ...]

Each topic has its poignancy and emergency ranging
from 1 to 9. Based on these topics, the brain generates the
candidates of the background and initial settings for the next
episode. The initial settings include the motions, places,
and emotions of the two characters, along with the emer-
gency and poignancy of the candidates. The prompt for
generating backgrounds is as follows:

Prompt for generating backgrounds

Here is a person named NAME. He/She has such
psychological states:
PSYCHOLOGICAL STATES
Psychological research has found such principles:
PERSONA INSTRUCTIONS
The person has experienced these stories:
PAST BACKGROUNDS & TOPICS
Below are the topic candidates:
TOPIC CANDIDATES
Based on the information above, generate a list of
backgrounds for the next episode.

An example of the output is:



Output

[{ “background”: “Young Jack is sulking after
a scolding”, “poignancy”: 7, “emergency”: 6,
“topic ids”: [0, 1], “initial setting” : { “Young
Jack”: {“emotion”: “shame, sadness”, “place”:
“sofa”, “motion”: “slouch on the sofa”}, “Old
Jack”: { “emotion”: “sympathy, contentment”,
“place”: “desk”, “motion”: “lean against the
desk” }}}, ...]

where ‘topic ids’ refers to the indices of topic candidates
presented in the prompt.

Since each character proposes candidates for the back-
ground of the next episode, they inform each other of their
proposed options. By balancing the levels of emergency and
poignancy, they select the candidate with the highest score
sbg as the background for the next episode. we get the sbg
as follow:

sbg = λ · e+ p, (3)

where e is the emergency, p is the poignancy, and λ is set to
2 in our experiments.

B.7. Motion Captioning

In this section, we elaborate on the potential usage of mo-
tion captioning in our DLP framework (Appendix B.7.1).
We then provide more details of our study on motion cap-
tioning, including an overview of related work in Ap-
pendix B.7.2, followed by an in-depth exploration of our
method in Appendix B.7.3, and a comprehensive discussion
of our training strategy and data preparation techniques in
Appendix B.7.4.

B.7.1 Details of Main Paper Fig. 7

In Main Paper Fig. 7, we leverage SMPLer-X [4] to cap-
ture the human player’s motion from the RGB video, cap-
tured with a Kinect Azure. The captured SMPL-X sequence
is then passed to the motion captioning module to obtain
the text description of the motion (e.g., “waving”), which is
then formatted into behavior, with empty speech and prede-
fined place (e.g., “center”). One character is set to represent
the human player, which always holds the active charac-
ter status, and has its SocioMind overridden by the motion
captioning module. The rest of the pipeline is the same as
depicted in Main Paper Fig. 2.

B.7.2 Related Works of Motion Captioning

Motion captioning is essential for the accurate description
and interpretation of human movements. Human motion
is conventionally represented in two modalities: 2D video
and 3D parametric data. The intricacies of human joint

movements and the complexities inherent in body priors
make 2D video an inadequate medium for a detailed and
comprehensive representation of motion. Consequently, the
use of 3D parametric motion representation, as advanced
by Guo et al. [14], has gained prominence in the field of
human-motion analysis, attributed to its superior represen-
tational capabilities. Historically, acquiring 3D parametric
human motion data from real-world scenarios was challeng-
ing. However, recent advancements in vision-based mo-
tion capture, especially in deriving 3D parametric models
from monocular videos [4, 23, 24, 26, 52, 55], have en-
abled the effective reconstruction of 3D human motion from
2D footage. In the realm of motion captioning, innovative
methodologies such as TM2T [15] and MotionGPT [20],
which utilize 3D parametric data, have demonstrated poten-
tial. TM2T [15] introduces a novel approach by compress-
ing motion sequences into discrete variables, coupled with
a neural translation network for effective modality map-
ping and captioning. Similarly, MotionGPT [20] employs
a strategy of motion tokenization as well, integrated with a
motion-aware language model, to facilitate caption genera-
tion. Despite these advancements, both methods have lim-
itations in their discrete motion representation, potentially
leading to the omission of critical motion features. Further-
more, the absence of an end-to-end training framework in
these models poses significant challenges in terms of prac-
tical implementation and usability.

B.7.3 Method of Motion Captioning

Our “eye”, the motion captioning module, utilizing 3D
parametric data [15] tailored for human motion analysis,
is crucial for perceiving and translating user-generated mo-
tion into text. This approach, favoring structured and de-
tailed 3D representation with inherent human motion priors
over 2D motion features, aligns well with recent advance-
ments in vision-based motion capture [4, 23, 24, 26, 52, 55],
aiding efficient 3D data extraction. Despite progress, chal-
lenges in accuracy and linguistic interpretation with current
3D data-based motion captioning methods [15, 20] remain.
To address these, we adopt the multimodal instruction learn-
ing paradigm [22, 53, 59], proven in text-vision domains, to
enhance our ability to interpret complex motions and pro-
duce coherent, accurate descriptions. In Figure 6, we effec-
tively integrate a retrieval-augmented motion encoder with
the MPT-1B Red-Pajama language model, following text-
vision domain structural paradigms. This enhances mo-
tion feature representation for better language guidance and
leverages prior knowledge for improved motion captioning.

Retrieval-Augmented Motion Encoder. Our motion en-
coder is designed to efficiently extract and integrate motion
features with textual information, ensuring seamless inter-



Figure 6. The architecture of our motion captioning module. First, the video undergoes processing to extract 3D motion parameters in
(a). These 3D paramatric data are then processed using a retrieval-augmented motion encoder as shown in (b.1), (b.2), and the resulting
motion features are fed into the language module’s gated cross attention layers to guide language generation, as shown in (c).

action with the subsequent language model. Inspired by
multimodal feature retrieval’s effectiveness in augmenting
generation, notably the ReMoDiffuse [57] in text-guided
motion generation, we have designed and incorporated a
retrieval-augmented motion encoder into our workflow.

Our process starts with building a multimodal retrieval
database from our extensive training dataset (i.e., DLP-
MoCap), containing paired motion and caption data. For
each input motion sequence Θ with length L, we first ex-
tract its features fΘ = Em(Θ) using a pretrained motion
feature extractor Em. This extractor is obtained through
contrastive learning in conjunction with the CLIP [39] text
model. Then we identify similar samples for Θ from the
database. This similarity score si between the database i-
th data point (Θi, texti) and the given motion sequence Θ
is determined by a scoring mechanism that evaluates both
motion feature and sequence length similarity, akin to the
method used in ReMoDiffuse [57]:

si =< fm
i ,fΘ > ·e−λ·γ ,

fm
i = Em(Θi), γ =

∥li − L∥
max{li, L}

,
(4)

where li is the length of Θi, < ·, · > denotes the cosine sim-
ilarity calculation between the two features, and λ finely
balances these similarity aspects for more accurate repre-
sentation. Based on the calculated similarity score, We
obtain the retrieved text features Rt and motion features

Rm following the methodology established in ReMoDif-
fuse [57].

Our encoder is grounded in a transformer architecture,
enhanced with Semantics-Modulated Attention (SMA) lay-
ers, a cross-attention structure proven effective in ReMoD-
iffuse [57]. In SMA layers, the query vector Q is formulated
from the original motion sequence fm, while the key vec-
tor K is the concatenation of fm and [Rm;Rt]. The value
vector V merges fm and Rm. This arrangement ensures
a thorough integration of both original and retrieved fea-
tures. After processing by the encoder, the motion sequence
is then ready for the language module, where it undergoes
text generation.

B.7.4 Training Strategy

Data Structuring. The training data is structured to im-
prove the model’s ability to follow instructions and main-
tain conversational coherence, adopting a chatbot-like for-
mat. Specific tokens such as <motion>, <answer>, and
<endofchunk> are adopted from Otter [22]. Each piece
of data follows the format:

<motion> User: [instruction] GPT: <answer> [an-
swer]. <endofchunk>.

The <motion> token, signifying input motion se-
quence, is crucial for ensuring a proper alignment between
motion inputs and textual outputs. The <answer> token
delineates the responses by model from the instructions.



During training, all tokens following the <answer> token
are masked, and they are set as the prediction targets of the
model — essentially, the captions of the motion sequences.
Additionally, to make full use of all motion annotations and
to enable the model to better learn the complex many-to-
many relationships between motion and language, we con-
catenate different annotations of the same motion according
to the aforementioned format, and train them together as a
single piece of data.

Data Augmentation. The quantity of data plays a pivotal
role in the quality of the generated text. In recognition of
this, we have employed the text-driven motion generation
methodology, ReMoDiffuse [57], to regenerate all the mo-
tions in our training dataset according to their correspond-
ing textual annotations. This approach has effectively dou-
bled the size of our original dataset, thereby enhancing the
robustness of our model with a richer and more varied set
of training examples.

C. More Details of DLP-MoCap Dataset
DLP-MoCap has three subsets. First, Basic motion set that
includes simple motions with low-level semantics, such as
“walking” and “sitting down”. Second, Interactive motions
are atomic clips of two-person interaction, such as “shak-
ing hands” and “high five”. Third, Short Script Play that
consists of longer, semantically continuous motions (3-5
interactive actions), following a specific background such
as “meeting”. We show samples of DLP-MoCap in Fig. 7.
Overall, DLP-MoCap comprises 22% basic motions, 56%
two-person interaction motions, and 22% short script plays
each containing 5-10 interactive actions, giving rise to over
nine hours of human motion and over one million frames of
annotated motions at 30 FPS.

C.1. Scripts

For Interactive and Short Script Play, we prepared scripts to
guide professional actors and actresses in the motion cap-
ture process. Each script consists of motion descriptions
and speech lines. We collect a diverse collation of these
scripts with a hybrid approach: we combine manually writ-
ten scripts and massive generated scripts using GPT-4 [44]
with human inspection.

C.2. Annotation

We recruited 10 human annotators to label the actors’ in-
teractive actions. In the interactive actions between char-
acter A and character B, we annotated the start and end
frames of each individual’s semantic actions. Additionally,
we marked the frames where physical contact occurs and
ends between the two individuals. If the actions of the ac-
tors deviate from the script, we manually adjust the script

to align with the actors’ actions. Ultimately, we obtained
an interactive motion dataset with over 4K text-interaction
motion pairs.

C.3. Motion Data Processing

We hire four professional actors/actresses (two male and
two female), who agree that their motion data can be used
for research purposes. We used an optical MoCap system
consisting of 30 cameras to capture 3D body data. The ini-
tial MoCap data captured 3D positions of 53 marker points
on each actor’s body surface at 120 FPS. In the meanwhile,
motion capture gloves with inertial sensors tracked their
hand motions. We then downsampled and processed them
into SMPL-X format. Firstly body shape parameters (beta)
were fitted from first frame marker data for actors. Then
pose parameters (theta) in each frame were regressed fol-
lowing the pipeline of SOMA [13]. Mapping the original
format of hand poses into MANO [41], body and hand pa-
rameters were combined as an SMPL-X data format.

D. Additional Experiments and Details

D.1. Motion Matching

D.1.1 Implementation Details

We adopt the approach of previous studies [17, 38] by em-
ploying three types of trajectories, namely wave, circle, and
square, to assess the responsiveness and tracking capability
of our system. The wave trajectory is defined as a sine func-
tion with respect to time, represented by x(t) = 2 sin(t).
The square trajectory is characterized by a side length of
5. As for the circle trajectory, its diameter is set to 5. We
evaluate the quality of the generated motion by comput-
ing the Euclidean distance between the generated motion
and the target trajectory. In accordance with prior research
[38], we randomly select 50 seed poses for matching in
each trajectory and report the mean trajectory error along
with its standard deviation. As for data, we use the same
database as previous work [38]. During motion matching,
the weights of body pose, trajectory, facing, and hip height
are 1 : 3 : 1 : 1. Please note that in the case of interac-
tive motion, the weights will vary as the target trajectory is
not present. These weights can be adjusted by the user, al-
though the default weight of 1 is typically satisfactory [18].

D.1.2 Experiment Analysis

We present quantitative and qualitative ablation experi-
ments on motion matching to illustrate the role of its fea-
tures. For a large-scale database, the text may lack cer-
tain information, such as whether the character is seated
or standing. As depicted in Fig. 8, although the text em-
bedding can retrieve motions that align with the query texts
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Figure 7. Samples of DLP-Mocap Data. Motion Data visualizations from three categories (Basic, Interactive, Short Script Play). Note we
show only the simplified text annotation here; detailed motion descriptions of each action are included in the dataset for Interactive and
Short Script Play.

(handshake, then high ten), the absence of kinematics fea-
tures (Fig. 8b) leads to that the characters may suddenly sit
down if a seated motion is selected, resulting in a degra-
dation of visual quality. Additionally, our pipeline requires
both characters to align their positions and orientations be-
fore engaging in interactive motion. As depicted in Fig. 9b,
in the absence of kinematics features, if the retrieved motion
necessitates the character to move to the right side of the
active actor, the character must walk to that position. How-
ever, by incorporating kinematics features (Fig. 9a), it be-
comes possible to select a motion situated on the left side of

the active actor, and consequently, this additional movement
is avoided (Fig. 9b). Besides, as demonstrated in Tab. 1, the
kinematic features play a crucial role in trajectory following
as they include position, velocity, and orientation informa-
tion.

D.2. Motion Generation

D.2.1 Implementation Details

We employ similar configurations for the DLP-MoCap and
InterHuman dataset. Specifically, for the motion encoder,



(a) With kinematics features

(b) Without kinematics features

Figure 8. Comparison of generated motion with and without kine-
matics features. Kinematic features play a crucial role in prevent-
ing sudden sitting down.

(a) With kinematics features

(b) Without kinematics features

Figure 9. Comparison of generated motion with and without kine-
matics features. Kinematic features are helpful in avoiding unnec-
essary movement.

Table 1. Ablation of the kinematics features in trajectory fol-
lowing task. The kinematics features are vital for trajectory fol-
lowing.

Trajectory Error / m
With kinematics features W/o kinematics features

Square 0.129± 0.024 3.872± 0.694
Circle 0.209± 0.032 3.039± 0.489
Sine 0.123± 0.020 4.393± 0.822

we utilize a 4-layer transformer with a latent dimension of
512 for each person. The text encoder consists of a frozen
text encoder from CLIP ViT-B/32, supplemented with 2 ad-
ditional transformer encoder layers. In terms of the dif-
fusion model, the variances (βt) are predefined to linearly
spread from 0.0001 to 0.02, and the total number of noise
steps is set to T = 1000. Optimization is performed using
the Adam optimizer with a learning rate of 0.0002, and a
cosine learning rate scheduler which smoothly reduces it to

0.00002 at the last epoch. Training is conducted on 4 Tesla
V100, with a batch size of 128 on a single GPU, and lasts
20 epochs in total.

D.2.2 Evaluation Metrics

We employ the performance measures used in MotionDif-
fuse for quantitative evaluations, including Frechet Incep-
tion Distance (FID), R Precision, Diversity, Multimodality,
and Multi-Modal Distance:
1. FID (Frechet Inception Distance): This objective met-

ric calculates the distance between features extracted
from real and generated motion sequences, providing a
reflection of the generation quality.

2. R-Precision: This measures the similarity between the
text description and the generated motion sequence. It
indicates the probability that the real text appears in the
top k after sorting, with k set to 1, 2, and 3 in this work.

3. Diversity: This metric assesses the variability and rich-
ness of the generated action sequences.

4. Multimodality: It measures the average variance of
generated motion sequences given a single text descrip-
tion.

5. Multi-modal Distance (MM Dist): This represents the
average Euclidean distance between the motion feature
and its corresponding text description feature.

D.2.3 Experiments on the DLP-MoCap

Table 2 shows the quantitative comparison on the DLP-
MoCap test set. Our proposed method outperforms the
existing works by a significant margin, especially on the
FID metric. We also want to highlight that our synthesized
motion sequences are highly consistent with the given text
prompts and achieve very competitive R Precision results.
These results demonstrate the superiority of our proposed
MoMat-MoGen generation scheme.

D.2.4 Ablation Study on the DLP-MoCap

As shown in Table 3, MoMat and Weight Sharing have a
positive effect on the FID metric, while MoGen has a posi-
tive effect on the Diversity metric. In addition, our proposed
method achieves the best balance of these two metrics.
Tab. 4 shows that all four proposed branches in Fig. 2 of
MoGen are critical and constribute significantly to the final
performance.

D.2.5 Visualization

As depicted in Fig. 10, in the first example, our approach
exhibits several advantages over intergen: 1) In motion in-
volving close contact, such as shoulder-to-shoulder inter-
action, penetration is a common artifact. However, our



Table 2. Interactive Motion Synthesis results on the DLP-MoCap test set. ‘↑’(‘↓’) indicates that the values are better if the metric is
larger (smaller). We run all the evaluations 20 times and report the average metric and 95% confidence interval is. The best result are in
bold and the second best result are underlined. Our MoMat-MoGen method achieves the best balance between accuracy and diversity.

Methods
R Precision↑

FID↓ MM Dist↓ Diversity↑ MultiModality↑
Top 1 Top 2 Top 3

Real motions 0.541±.002 0.758±.002 0.850±.002 0.000±.000 3.430±.012 4.207±.071 -
MotionDiffuse [56] 0.035±.004 0.058±.005 0.098±.007 14.883±.824 4.199±.21 0.677±.018 0.655±.018

ReMoDiffuse [57] 0.425±.002 0.627±.003 0.773±.003 0.131±.004 3.582±.015 4.097±.052 0.472±.009

InterGen [25] 0.403±.003 0.582±.003 0.728±.003 0.082±.002 3.615±.014 4.186±.048 0.728±.021

Ours (MoMat Only) 0.517±.001 0.652±.001 0.802±.001 0.034±.000 3.313±.001 0.332±.001 0.002±.000

Ours (MoMat-MoGen) 0.495±.003 0.651±.004 0.792±.004 0.071±.002 3.561±.017 4.025±.050 0.452±.012

two individuals walk side by side, supporting each other. one of 
them suddenly shoves the other person to the ground.

#251

a) InterGen b) MoMat-MoGen

the first one throws a right-handed punch and follows up with a left-
handed punch, hitting the second one. the second one evades the attack by 

pulling back and raises their hands in defense. #117

a) InterGen b) MoMat-MoGen

Figure 10. Visual Comparison on the InterHuman dataset. Our proposed method can generate more text-consistent and natural motion
sequences.

Table 3. Ablation of the proposed architecture. All results are
reported on the DLP testset.

MoMat MoGen Weight Sharing FID↓ Diversity↑
a) ✓ - - 0.034 0.332
b) - ✓ - 5.721 3.165
c) - ✓ ✓ 4.196 3.749
d) ✓ ✓ - 0.172 4.028

e) ✓ ✓ ✓ 0.071 4.025

Table 4. Ablation of DSMA’s branches. All results are reported
on the DLP-MoCap test set.

Independent Motion Text Twin Reference FID↓
✓ - - - 8.742
✓ ✓ - - 7.495
✓ ✓ ✓ - 5.721
✓ ✓ - ✓ 0.681
✓ - - ✓ 1.964
✓ ✓ ✓ ✓ 0.071

method ensures better contact and minimizes penetration.
2) Our approach achieves improved text alignment by ac-
curately representing the ”to ground” description, whereas
intergen merely involves a simple waist bend. 3) We incor-
porate a comprehensive downward tilt motion, followed by
the blue character’s process of standing up with the assis-
tance of another person. As for the second example, our
method accomplish the required two punches, while Inter-
Gen only fulfills one. In addition, our generated interaction
is more natural since the punching and stepping backward
take place simultaneously. These two examples strongly

suggest that our proposed method can generate more text-
consistent and natural motion sequences.

D.3. Motion Captioning

In this section, we assess the efficacy of our motion cap-
tioning module, focusing on its ability to generate motion
captions that are both high-quality and accurate.

D.3.1 Implementation Details

In our study, both the HumanML3D [14] and KIT-
ML [37] datasets are configured similarly. We utilize
a 12-layer transformer-based retrieval-augmented motion
encoder with SMA layers and a 512-dimensional latent
space. Our pretrained motion feature extractor, also a 12-
layer transformer, has standard self-attention layers in the
same dimensional space. Adhering to Otter’s [22] training
method, we freeze the MPT-1B RedPajama language en-
coder to utilize pretrained knowledge and prevent overfit-
ting. Fine-tuning is limited to the retrieval-augmented mo-
tion encoder, the perceiver resampler module, and the lan-
guage encoder’s cross-attention layers. For precise and co-
herent motion captions, we use cross-entropy loss and opti-
mize with the AdamW [28] optimizer, starting at a learning
rate of 1 × 10−4, a batch size of 16, over 5 epochs. A co-
sine annealing scheduler adjusts the learning rate, comple-
mented by gradient clipping set to 1.0 to prevent gradient
explosion.



D.3.2 Evaluation Metrics.

For our experiment’s evaluation, we follow [15] and employ
two categories of metrics:
1. Text Matching Accuracy: involves R Precision for

checking the alignment accuracy between text and mo-
tion, and Multi-modal Distance (MMDist) to gauge the
feature space distance between these modalities.

2. Linguistic Quality of Captions: includes Bleu [34] for
assessing translation closeness, Rouge [5] for summary
quality, Cider [51] for n-gram matching consensus, and
BertScore [58] to evaluate semantic accuracy through
deep contextual embeddings.

D.3.3 Experiments

We evaluated the proposed motion captioning module on
the KIT-ML [37] and HumanML3D [14] datasets, the re-
sults of which are presented in Tab. 5 and Tab. 6. The out-
comes of these tests demonstrate that our proposed method
not only surpasses current methods in performance but also
excels in linguistic metrics.

D.4. SocioMind

In this section, we introduce supplementary details on the
design of our user study in Appendix D.4.1, and the qual-
itative and quantitative case analyses of social evolution in
Appendix D.4.2.

D.4.1 User Study Design

In the controllability experiment of SocioMind, we pro-
vided 3 ∼ 5 psychological state types for each dimension
in personality, motivation, central belief, and social rela-
tionship. We generate records of SocioMind on several
setups (e.g., father-son, siblings, teacher-student relation-
ships). While generating the records, the hyper-parameter
a is 0.4 for events and 0.1 for thoughts, k is 4 for events
and 2 for thoughts. The forgetting threshold Tf is 0.6 for
an event and 0.3 for a thought. As shown in Fig. 11, we
show the records to human evaluators and ask them to select
the appropriate psychological state from a set of randomly
shuffled options. The user study was conducted in the form
of a questionnaire survey, with a total of 47 questionnaires
collected. Human evaluators are composed of individuals
aged between 20 and 45 years old, including 28 males and
19 females, all possessing proficient English reading skills.
Their professional backgrounds varied, including university
students, researchers, engineers, and teachers. Our records
contain a total of 64 episodes, and each questionnaire ran-
domly selected records from 8 different episodes for hu-
man evaluation. For controllable costs and fair comparison,
all the LLM inferences utilize GPT-3.5 [44] in our experi-
ments.

D.4.2 Case Analysis

To clearly illustrate the concept of social evolution, we con-
duct the case analysis based on the initial setting shown in
Fig. 3, Old Jack conversing with his younger self across
time and space. In this case, Old Jack has experienced the
vicissitudes of life, with his dearly loved wife and mother
having passed away. Now, with the ability to traverse time,
Old Jack converses with his younger self, hoping to inspire
Young Jack to cherish time and the people around him.

As shown in Fig. 12, the records of SocioMind with ini-
tial settings about Old Jack and Young Jack are in alignment
with the Social Penetration Theory [1].

In the initial episode, when Old Jack appears suddenly,
Young Jack maintains vigilance and concern towards this
unexpected intruder in his home, despite Old Jack’s at-
tempts at friendly communication. Young Jack’s request for
Old Jack to leave is consistent with the Orientation stage of
the theory [1].

As the storyline progresses, Old Jack comforts Young
Jack, who is disheartened by exam failures, and shares
some amusing photographs and thoughts. For instance,
when they talk about the value of time, Young Jack believes
that playing games is of utmost importance. Old Jack re-
marks, ‘Sometimes, games can wait, but people can’t; we
should cherish every moment we have with them.’ In this
phase, Young Jack’s skepticism and vigilance towards Old
Jack gradually diminishes, and he begins to share some of
his own thoughts, aligning with the Exploratory Affective
stage [1].

Later, as their communication goes deeper, Old Jack re-
calls his own past joys when seeing the old photos, dis-
cusses photography techniques with Young Jack, and makes
plans to take photos with Young Jack in the park. At this
stage, both characters start to disclose more personal infor-
mation, and there is an increase in intimacy and trust, which
corresponds to the Affective stage [1].

D.5. Inference Time

Our profiling shows that on average, to synthesize a typ-
ical interaction segment of ∼8s, SocioMind takes 19.81s
(19.20s spent on GPT-4 API calls of ∼500 tokens), MoMat
takes 0.41s (including path finding) and MoGen takes 7.86s.
The pipeline is thus mainly bottlenecked by the LLM; Mo-
Gen can also be omitted to trade diversity for speed.

D.6. Failure case

Despite a decent coverage of common daily activities,
MoMat-MoGen occasionally struggles when SocioMind
produces out-of-distribution (not in the motion database or
training set) motion descriptions. Fig. 13 shows wrong mo-
tions are synthesized for “<motion> clasping both hands”.



Table 5. Motion Captioning results on the KIT-ML test set. Our evaluation methodology aligns with the TM2T [15] metrics, but we
uniquely utilize unprocessed ground truth texts for calculating linguistic metrics as done in MotionGPT [20].

Methods
R Precision↑

MMDist ↓ CIDEr ↑ Blue@1 ↑ Blue@4 ↑ Rouge ↑ BertScore ↑
Top 1 Top 3

Real 0.399 0.793 2.772 − − − − −
TM2T 0.359 0.668 3.298 25.29 36.42 7.98 31.26 20.07
MotionGPT 0.392 0.723 3.341 12.32 40.51 6.59 38.79 24.50
Ours 0.410 0.765 2.647 71.06 53.88 22.91 50.63 46.13

Table 6. Motion Captioning results on the HumanML3D test set. Our evaluation methodology aligns with the TM2T [15] metrics, but
we uniquely utilize unprocessed ground truth texts for calculating linguistic metrics as done in MotionGPT [20].

Methods
R Precision↑

MMDist ↓ CIDEr ↑ Blue@1 ↑ Blue@4 ↑ Rouge ↑ BertScore ↑
Top 1 Top 3

Real motions 0.523 0.828 2.901 − − − − −
TM2T [15] 0.516 0.823 2.935 16.8 48.9 7.00 38.1 32.2
MotionGPT [20] 0.543 0.827 2.821 29.2 48.2 12.5 37.4 32.4

Ours 0.551 0.832 2.813 36.2 51.1 15.5 41.9 35.0

E. Discussion

Stylization based on personality and relationships.
Motions indeed convey subtle messages; we highlight that
the nuanced difference can be included in the text descrip-
tion (e.g., “getting close in a friendly manner”). In our
practice, it is common for LLM to output detailed descrip-
tions such as thoughtfully and with excitement, particularly
when providing comprehensive portrayals of individuals’
relationships. Furthermore, motion databases (e.g., DLP-
MoCap) contain a stylized description in their data. Hence,
this allows our motion synthesis to exhibit stylization ca-
pabilities and serves as a foundation for future studies on
stylized motion synthesis. Specifically, we prompt an LLM
(GPT-4) to create appropriate text descriptions of personal-
ized motions, and DLP-MoCap includes common interac-
tions in various role-based contexts (e.g., enemy/friends).
In practice, the LLM typically gives motion descriptions
that fit the character well with our SocioMind, and usually,
a highly relevant motion is retrieved.

On the human biases. In practice, we find GPT-4 typi-
cally produces outputs that abide by social norms, thanks
to the recent developments in LLM alignment. Moreover,
our DLP-MoCap is constructed with careful human inspec-
tion to minimize biases, and this can be extended to future
endeavors to build comprehensive motion databases.

Limitations. As the first work towards building au-
tonomous 3D characters with social intelligence, Digital
Life Project has several limitations. First, this work inves-
tigates the interaction between two characters. However,
synthesizing the 3D motions of a large group of characters
with interactive behavior remains a significant challenge.
Second, DLP focuses on modeling human-human interac-
tion. Despite some level of ability to navigate in the scene

and interact with the furniture, integrating more compre-
hensive human-scene and human-object interaction in the
framework is left as future work.
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A sample from the questionnaire

Here is the background and interactive dialog between Jack and Leon.

=== BACKGROUND ===
Jack is Leon’s father. Leon chooses his major in college. Leon often studied computer stuff some time ago, but this
time he did very poorly on the math exam and failed the algebra part.
=== SCRIPTS ===
Jack:Hey Leon, you didn’t do well in math. Are you okay? Can I help you improve? [sits down next to Leon on the
sofa,concerned]
Leon:I’m really upset about my math exam, Dad. I worked so hard, but I just couldn’t understand the algebra part.
It’s frustrating because I want to do well and pursue my dream of becoming a game developer in the future. I know
coding and programming are important skills for that, but without a strong foundation in math, it feels like an uphill
battle. [slumps back on the sofa, disappointed]
Jack:I understand how frustrating it can be when things don’t go as planned. Math can be challenging. Let’s make it
easier and more enjoyable. [lean forward, supportive]
Leon:I appreciate your understanding, Dad. I want to improve in math, so I think finding online math resources
would help. [sits up straight, determined]
Jack:That’s great, Leon. Online math resources can help you better understand concepts. Any specific websites in
mind? [leans forward attentively, encouraging]
Leon:I recommend checking out Khan Academy and Brilliant, they offer video lessons, practice problems, interactive
courses, and problem-solving techniques for math. [nods, hopeful]
Jack:I’m confident in your ability to improve. Let’s check out Khan Academy and Brilliant together for a strong
math foundation. [puts a hand on Leon’s shoulder, encouraging]

The statement that best describes Leon’s personality is:
• Rebellious son: Likes to try different things and is creative and is resistant to rules and constraints.
• Independent son: Able to complete tasks independently, does not require too much guidance.
• Achievement-oriented son: self-disciplined, organized, achievement-oriented and goal-oriented.
• Dependent son: emotionally relies on the feedback and support of others.

Figure 11. A sample from our questionnaire. Human evaluators are asked to read the records and pick the right option from the given
psychological states.
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Word clouds from keywords of events and thoughts

Figure 12. Visualization of social evolution on initial setting ‘Old Jack and Young Jack’ (Young Jack’s view). The first and second rows
show the emotions and social relationships change with each episode, where the horizontal axis encapsulates a summary of each episode’s
story. The third row shows a word cloud visualization of the keywords of the events and thoughts generated during psychological reflection
within each episode. The figure shows that Young Jack’s emotions and his social relationship with Old Jack evolve progressively with the
storyline, aligning with the Social Penetration Theory [1].

Figure 13. Failure case. The character gives a “palm up” gesture.
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