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Pairwise Frame Interval

Method 1 5 10 15 20

Per-Frame 0.9547 0.9173 0.9109 0.9145 0.9062
Pix2Video* 0.9630 0.9503 0.9494 0.9415 0.9471
TokenFlow* 0.9822 0.9754 0.9728 0.9706 0.9712
Gen1 0.9907 0.9715 0.9582 0.9624 0.9601
Ours 0.9845 0.9815 0.9738 0.9749 0.9727

Table 2. Frame consistency with different intervals. Our ap-
proach offers better or competitive consistencies at different inter-
vals. *: baseline adapted to our setting.

A. Additional qualitative results

We refer to the supplemental webpage for various qualita-
tive results obtained by using different 3D scenes, motions,
and target prompts.

B. Additional quantitative results

We report CLIP [29] embedding similarities for a pair
of frames separated by different frame intervals in Tab. 2.
As shown, semantic consistency achieved by our method is
stable across different intervals. This is potentially because
of our texture-based feature aggregation. This provides a
canonical representation for the objects that links frames
that are temporally further apart even in long sequences.
Even though video-based methods such as Gen1 [7] achieve
temporally smoother results, we speculate that it is not easy
for them to capture such long range interactions.

C. Robustness to video length

Our method can be scaled up to handle long input se-
quences. To generate a long output video, our method re-
quires the sampling of a sparse set of keyframes, and the
unified features in the texture space can be propagated. The
only GPU memory bottleneck in our method is the parallel
processing of the keyframes using inflated attention. Our al-
gorithm is robust enough to generate long videos with >200
frames with <12GB GPU memory.

D. Additional ablations

Effectiveness of UV noise initialization. We find that the
performance of many components in our pipeline, e.g. in-
flated attention, are tightly related to the initial noise. Video
editing works [6, 10, 39] typically require accurate DDIM
inversion [17] as noise initialization. Using DDIM inverted
noise encourages temporal coherence and similarities to the
input video. However, since our input is textureless UV
maps and depths, DDIM inversion constantly fails and will

not provide useful information. We instead propose to utilize
the canonical UV space to initialize the noise in each frame
of the sequence. In our supplemental page, we show the
effectiveness of this initialization strategy.

Effectiveness of latent normalization. Our latent normal-
ization can address a large portion of the color flickering
issue, where the overall color distribution shifts randomly
for different frames. We notice that small color shifts in
the latent space will be inflated by the VAE decoder used in
Stable Diffusion [32], causing the generation process very
sensitive to small differences in the latent space. The video
comparison is included in our supplemental page.

E. Perceptual user experiment

We conduct a perceptual study following the setups in
Pix2Video. Given 5 sets of 3D scenes and prompts, we
generate animations from our Generative Rendering and
baselines (please refer to Sec. 4 in our paper for the baseline
setups). We then ask 20 users to compare our animations
against the baselines. We ask two questions: 1) Which
animation looks more pleasing and represents the prompt
better? and 2) Which animation looks more consistent?
We show the preference below, where preference for the
first question is labeled as “faithfulness”, and the second
as “consistency”. We plot the % of answers that think our
method outperforms a baseline.

F. Limitation and failure cases

Figure 7. Effect of different texture resolution. If the ground’s
texture resolution is too low (2048⇥2048), artifacts appear at
ground regions in the final rendered image compared with using a
higher texture resolution (3072⇥3072). Prompt: a train running in
a field of green grass.



Generative rendering still suffers from several aspects.
Firstly, it cannot achieve real-time animations due to the
multi-step inference of current diffusion models. However,
accelerating this inference stage has been an active research
area and advances in this area, such as consistency mod-
els [34], can be directly applied to speed up our method.
Furthermore, generative rendering is not yet able to guaran-
tee perfect consistency and preservation of details. This
is mainly because our method works purely in the low-
dimensional latent space, which is only 64⇥ 64 pixels in our
model resulting in imprecise UV correspondences. For the
same reason, generative rendering may suffer from unwanted
misalignment and artifacts. We believe that applying some
of findings to pre-trained video diffusion models to augment
them with 3D controllability is an exciting future direction.
A large portion of our inconsistency comes from the VAE de-

coder. As mentioned in D, small inconsistencies in the latent
space will be inflated by the VAE decoder while transiting
into RGB frames. This phenomenon scales to image details,
where small differences in the latent space will be inflated
after decoding with the VAE. Additionally, since our noise
initialization and feature fusion both work in the UV space,
it could be tricky to set the texture resolutions. Setting the
texture resolution too low will create corrupted regions while
too high will cause the UV coordinates to be too far away
and no blending effect will take place. An example is shown
in Fig. 7. Finally, our work does not yet generalize to large
environmental changes and dramatic perspective changes.
This is because of the highly overlapping pixel-wise matches
and bad feature projections. We believe finetuning or adding
a video module to be an exciting future direction to improve
the performances on these more challenging scenes.


