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In this supplementary material, we present additional ab-

lation studies on the historical prompt encoder and the his-

torical prompt decoder in Section 1 to demonstrate the ef-

fectiveness of our design. In Section 2, we provide more

comprehensive performance comparisons between our pro-

posed HIPTrack and other trackers on LaSOT [3] test split,

as well as their performance in different complex scenarios

within LaSOT. In Section 3, we provide more qualitative

visualization analyses.

1. Further Analyses
1.1. Ablation Studies on Historical Prompt Encoder

In the historical prompt encoder, we employ a lightweight

network Φ to perform initial encoding on the input 4-

channel image tensor and obtain the feature map F . In the

first row of Table 1, we investigate whether the encoder Φ
can be made even lighter. We replace Φ from the first three

stages of ResNet-18 [7] with a single convolutional layer.

The results in the first and fourth rows indicate that replac-

ing Φ with a single convolutional layer leads to performance

degradation, which suggests that a stronger initial encoder

Φ is required for encoding the historical target features.

After obtaining the feature map F ′
1 from the output of

the residual block fRB1, the historical prompt encoder em-

ploys spatial attention and channel attention to enhance the

feature map F ′
1. In the experiments of the second and third

rows in Table 1, we respectively remove these two branches

from the historical prompt encoder to investigate their im-

pact on tracking accuracy. The comparative results of the

second, third, and fourth rows indicate that incorporating

channel attention and spatial attention both yield positive

benefits in tracking accuracy.

1.2. Ablation Studies on Historical Prompt Decoder

The historical prompt decoder is utilized to store the his-

torical target features and adaptively aggregate them with

∗Corresponding author.

Table 1. Ablation studies on lightweight encoder Φ and whether

to use channel and spatial attention on LaSOT test set.

# Φ Channel Spatial AUC(%) PNorm(%) P(%)

1 � � � 72.1 82.2 78.7

2 � � � 72.3 82.4 79.1

3 � � � 72.4 82.5 79.1

4 � � � 72.7 82.9 79.5

the current search region feature to generate the historical

prompt. In Table 2, we investigate the impact of different

memory bank sizes on the tracking performance. In Table

3, we investigate the impact of different memory update in-

tervals on the tracking performance.

Memory Bank Size. The first four rows of Table 2 indi-

cate that increasing the memory bank size leads to a perfor-

mance improvement. In our approach, we set the memory

bank size to 150 without carefully tuning, which also im-

plies that there is still potential for performance improve-

ment in our approach. The results from the fourth and fifth

rows of Table 2 demonstrate that adding more historical in-

formation at the initial stage of tracking leads to a slight

performance improvement. This may be because the result

in the initial stage of tracking usually has higher accuracy,

which facilitates the rediscovery of the target after it is lost.

Update Interval. As shown in Table 3, we conduct ex-

periments using different update intervals on LaSOT. We

find that setting the update intervals to 5 or 10 resulted in

negligible performance improvement. Additionally, lower

update intervals require more frequent calls to the histori-

cal prompt encoder, which can diminish efficiency. On the

other hand, longer intervals such as 30 lead to a decline in

performance. Therefore, we have chosen an update interval

of 20, without carefully tuning as well.

2. More Detailed Results in Different Attribute
Scenes on LaSOT

In Figure 1, we present more detailed quantitative com-

parisons of the success curves between our proposed HIP-



Figure 1. Comparisons of our proposed HIPTrack with other excellent trackers in the success curve on LaSOT test split, which includes

eleven special scenarios such as Low Resolution, Motion Blur, Scale Variation, etc. We also provide the comparisons of the success and

precision curves across the entire LaSOT test split.

Track and other excellent trackers SeqTrack [1], GRM [6],

TATrack [8], MixFormer [2], KeepTrack [9], OSTrack [10],

AiATrack [5], and SparseTT [4] across various attribute

scenes in LaSOT [3] test split. Figure 1 illustrates that our

HIPTrack outperforms other trackers across all subsets of

videos with special attributes in LaSOT. Particularly, when
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(a) Qualitative results of three methods when the targets undergo large deformations.
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(b) Qualitative results of three methods when the targets suffer from partial occlusions.
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(c) Qualitative results of three methods when the targets have large scale variations.

Figure 2. This figure presents a visual comparison among our method, SeqTrack [1] and GRM [6] in the challenges of target deformation,

partial occlusion and scale variation. It demonstrates that our method achieves more effective and accurate tracking in the aforementioned

challenging scenarios. Zoom in for better view.
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Figure 3. Visualization results of refined foreground masks. The construction process of refined foreground masks involves combining

the bounding box masks generated from the predicted bounding boxes and the CE masks obtained from the candidate elimination module

within the feature extraction network. The combining process is performed using the bitwise and operation.

Table 2. Ablation study on memory bank sizes and whether to

preserve the first 10 memory frames on LaSOT test set.

#
Memory Bank init 10 AUC(%) PNorm(%) P(%)Size

1 70 � 72.5 82.7 79.4

2 100 � 72.5 82.8 79.4

3 120 � 72.6 82.8 79.5

4 150 � 72.7 82.9 79.5
5 150 � 72.7 82.8 79.5

Table 3. Ablation studies on different update intervals on LaSOT

test set.

Interval 5 10 20 30
AUC(%) 72.7 72.7 72.7 72.6

PNorm(%) 82.9 82.9 82.9 82.5

P (%) 79.5 79.5 79.5 79.0

dealing with scenarios involving partial occlusion, full oc-

clusion, motion blur, and scale variation, our method sur-

passes the second best method by +1.5%, +2.7%, +1.4%,

and +1.1% AUC, respectively. The results in Figure 1

demonstrate that our proposed HIPTrack maintains a high

level of tracking accuracy and exhibits strong robustness in

scenarios involving target appearance variations.

Furthermore, when the target goes out of view, our pro-

posed HIPTrack also exhibits a performance improvement

of +1.1% AUC compared to the second best method, which

means that our proposed HIPTrack has a strong ability to

rediscover the lost target. Figure 1 also includes the com-

parisons of the success and precision curves between our

proposed HIPTrack and other approaches across the entire

LaSOT test split. Our method achieves the highest perfor-

mance in both two metrics.

3. More Qualitative Results
3.1. Tracking Results

In order to visually highlight the advantages of our method

over existing approaches in challenging scenarios, we pro-

vide additional visualization results in Figure 2. All videos

are from the test split of LaSOT. We compare our proposed

HIPTrack with GRM [6] and SeqTrack [1] in terms of per-
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Figure 4. Visualization results of memory bank attention maps across different tracking frames in each video. We select the top 5 memory

frames with the highest overall attention weights for visualization, arranging them in chronological order. Zoom in for a clearer view.

formance when the target undergoes deformation, occlu-

sion, and scale variation. All the selected video segments

are challenging , as described below:

• Figure 2(a) demonstrates the tracking results of three

methods when the target suffers large deformations.

• Figure 2(b) demonstrates the tracking results of three

methods when the target suffers partial occlusions.

• Figure 2(c) demonstrates the tracking results of three

methods when the target suffers large scale variations.

3.2. Refined Foreground Masks

Our proposed historical prompt encoder utilizes the candi-

date elimination (CE) module within the feature extraction

network to filter out background image patches to construct

a CE Mask. The Bounding box mask is created based on

the predicted bounding box of the current frame. These two

masks are then combined using bitwise and operation, re-

sulting in a refined target foreground mask. To investigate

whether the refined foreground mask accurately captures

the position information of the target, we visualize the pre-

dicted bounding boxes, CE Masks, and refined foreground

masks in Figure 3. The visualization results in Figure 3

demonstrate that the refined foreground mask effectively

filters out the majority of background regions, providing a

more precise depiction of the position information of the

target.

3.3. Attention Maps in Memory Bank

In the main body of this paper, we present visualization re-

sults of a subset of memory bank attention maps. In Figure



4, we further illustrate the visualization results of memory

bank attention maps across different tracking frames within

the same video.

As shown in Figure 4, the first row of results in the

first video demonstrates that when the target has not un-

dergone significant deformations or scale changes in recent

frames, the most recent memory frame receives noticeably

higher attention. However, the second and third rows in

the first video indicate that when the target undergoes dras-

tic changes in appearance, the historical prompt decoder

directs attention towards earlier historical memory frames,

thereby enhancing the prediction accuracy of the tracker.
In the second video, when the target undergoes severe

deformations, the historical prompt decoder adaptively di-
rects attention to the boundary regions of the target within
the historical memory frames, leading to a significant im-
provement in the precision of boundary prediction. A simi-
lar phenomenon can also be observed in the second row of
the first video.
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