PoseIRM: Enhance 3D Human Pose Estimation on Unseen Camera Settings via
Invariant Risk Minimization

Supplementary Material

This appendix can be divided into three parts. Precisely,

1. Section A presents a detailed derivation of the Minimum
Distance D,

2. Section B provides the formal expression of the loss
function about 3D pose and camera parameter.

3. Section C gives more implementation details about our
experiments, models and training.

A. Minimum Distance D,,;,, Calculation

Note that, in the test time, the task of HPE is to estimate the
locations of the keypoints of a person within the image,
i.e., camera’s screen. Therefore, to make the training and
test data consistent, we need to ensure the all the keypoints
of the generated 2D poses also lie in the image and thus we
need to calculate the minimum distance D,,,;,, (Section 3.1).
Below, we give the detailed steps to derive the expression of

We adopt the image coordinate system to determine
whether a point falls within the camera’s screen. We
first normalize the coordinates of an image into the square
[-1,1] x [-1,1]. Let (Ju,J») € R? be the coordinates
of a keypoint in a pose. Therefore, to make the keypoints
located in the image, it is equivalent to ensure that,

Ju €[-1,1and 7, € [-1,1]. (11)

Below, we try to derive the minimal distance to ensure
the above constraints always hold.

We Tet (18, 75, J5)) € R3 to be a point in three-
dimensional space under the world coordinate system.
Then, its projection (7, J,) on the camera plane can be
presented as:

(w)
T Foo0 oo [* Rio T 170
To| =Xs- |0 Fy Gy . r . T Twy |
1 o 0 1 :) : vl |J:
Rs1 -+ Raz T. 1
(12)

where the parameters F,C, T and R are defined in the main
text, and Ag € R is a normalization factor ensuring that the
third component of the transformed vector [7,,, 7y, 1]T is
1. Here, for the convenience of computation, we use the
matrix representation R for camera orientation, which has
the freedom of 3. We denote the keypoints rotated in camera

view as (Jy, Ty, J») € R3, that is

7 Ry -+ Ris lgw)
Tyl =1+ -~ Wl 13)
J- Ra1 -~ Ras (w)

From Equations 12 and 13, it follows that:

1

A= T +T.
 Fe(Te +T) +Co(T. 4+ T2)
Ju = T+ T. - 9
° T +T.

Notice that, in reality, the camera center C, is very close to
the center of the image, that is,

C,~0andC, ~ 0. (15)

Moreover, T, and 7; are significantly smaller than the co-
ordinates of the peripheral keypoints (J, Jy), i.e.,

|T2| < || and [T, < [Tyl (16)

Thus, by combining the Equations 15 and 16, Equations 14
can be approximated as:

_ FTs
VAR
%N$+E

By substituting Equation 17 into Equation 11 and using the
fact that 7, + 7, > 0, we obtain:

Ju
a7

T. > max(|Fp Tz, | FyTyl) — T-. (18)

Thus, we can get the minimal distance between camera
viewpoint and look-at point:

Diin = max (max(|Fz T2, |FyT|) — TL)s (19)
Jeg

where J is all the keypoints in the given dataset. (There is
a typo in the expression of D, in the maintext.)

Notably, owing to the presence of camera distortion and
the approximation error in the derivation, when directly us-
ing D, as the distance between camera viewpoint and
look-at point, some projected keypoints near the screen

edges might fall outside due to distortion effects. To miti-
gate this, we sample a slighter lagrer distance D as follows:

1 1
D,
1-)\scale e 1-)\scale

D~ Z/[(Dmin +)\D), (20)
which is mentioned in the main text and U(a, b) is the uni-
form distribution over the interval [a, b].

This adjustment helps in accommodating the distortion.

B. 3D Pose and Camera Parameter Errors

Let us first define the network of our PoseIRM as follows.
We formally define the backbone (i.e., the single-view
feature extractor and the multi-view feature fusion) as

f(b() - RV XTxJIx2 N]RV><T><C7 1)

where the backbone with the parameters ® takes V' x T 2D
poses of J joints from V' viewpoints and 7' frames as input
and output the feature in RV *7>¢

The 3d pose regression head takes the above extracted
feature to regress 3D poses of V' viewpoints and it takes the
form of

gv;(') :RVXTXC —}RVXJX37 (22)

where vy is the parameter vector of this pose regression
head.

The camera parameter regression head with the parame-
ters v¢ predicts the camera parameters of V viewpoints. The
camera parameters involve the camera orientation R € R3
in rotation vector representation, translation 7 € R3, fo-
cal length 7 € R2?, center C € R?, and distortion D =
(k1,ka, k3,p1,p2) " € R5. Thus, the camera parameter re-
gression head can be represented as

h'vg () . RVXTXC N RVX(3+3+2+2+5). (23)

We group the parameters vy, v; and @ together into w, i.e.,
w = {v,vS, ®} and define (R, T, F,C, D) to be the out-

pr Ve

putof h, i.e.,
(R, T,F,C,D) = h(fa(x°),vs), (24)

where x¢ € RV *T*7%2 ig the input, R € R3 is the pre-
dicted rotation vector, T € R3 is the predicted translation
vector, F € R is the predicted focal length, C e R?is
the predicted camera center, and D € R’ is the predicted
camera distortion.

Subsequently, we construct a loss for each output to fa-
cilitate supervised learning. For 3D poses, we apply stan-
dard MPJPE as the loss. For camera orientation R, we
apply cosine similarity loss to the rotation axis ﬁ and
1 loss to the rotation angle |R||2. For other terms, i.e.,
T,F,C, and D, we adopt ¢; loss.

Finally, suppose we are given the mn. samples
{(xi, Yy Yei)}icy in the environment e, where x§ €
RYVXT>J%2 is the input 2D poses, y&, € RY*/*? is the
ground truth 3D poses, and y¢; € RV*B+3121245) g the
ground truth camera parameters. We define the risk R¢(w)
(known as the loss in deep learning community) of the envi-
ronment e to be the sum of 3D pose loss £MPJPE(’U;, D)
and camera parameter 10ss Loam (v, ®). That is,

Ré(w) = Lmpire(W) + AcLoam (W), (25)

where

1
LupippW) = — > MPJIPE(gy: (fo(x5)),¥E,)

€ i=1
(26)
and,
1 &
LCam(w) = n_ezgec(hv:(f@(xf))»yai) (27)
and,

le(YerYe) = ZR(']AQ, R) +)\Tﬁl(j—, T) +Aply (]:“ F)
C,

+Acli(C.C) +Apli(D,D)
(28)

where ¢ is the ¢1 loss, and ¢ is the loss of camera orienta-
tion taking the form of

R R

/R(’]%,R) - ecosine ~)
(||R||2 IR||2

)+ (IR]2, IR]2),
(29)

where {¢ysine 18 the cosine similarity loss.

C. Implementation Details

We implement our PoseIRM with Pytorch. Four Nvidia
RTX 3090 GPUs are used for training and testing. We train
our model with Adam [13] optimizer for 100 epochs with
weight decay of 0.05. The learning rate is initially set to
2e-4 and is decreased by a factor of 0.1 for every 50 epochs.
The batch size is set to 400. We follow the model setting
of PoseFormer, that is, the number of input frames 7" and
views V are 27 and 4, respectively, while the channel of
joint feature C'; and pose feature C' are 32 and 544, sepa-
rately. The scaling factor Ag¢qie and Ap are 0.05 and 1, sep-
arately. The weight A of IRM regular J (w) is set to 100 in
the main experiment. The weight of losses A¢, A7, Ap, Ao
and A\ p are set to 0.1,0.1,1,1, and 1, respectively.

