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A. Additional Results
A.1. Additional Qualitative Results

Figure B provides additional qualitative results generated
by our relighting technique from portrait videos. We en-
courage readers to refer to the supplementary video for a
more comprehensive visualization of our method.

A.2. Additional Comparisons
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Figure A. Additional qualitative comparison between DPR and
ours. Our method consistently delivers portraits with more faithful
adherence to desired lighting conditions and enhanced realism.

We conduct a quantitative evaluation for both DPR [13]
and our method. It should be noted that DPR demonstrates
a considerably lower Fréchet Inception Distance (FID) and
a higher Identity Perseverance (ID). Specifically, the FID is
14.98 for DPR and 45.08 for our method, whereas the ID
is 0.8531 for DPR and 0.7711 for our method. However,
these metrics alone do not unequivocally indicate that DPR
generates more realistic results, as evidenced in Figure A.
The observed differences in FID and ID metrics can be at-
tributed to DPR’s underlying approach, which operates on
the LAB color format. Specifically, DPR selectively modi-
fies only the L channel while keeping the A and B channels
unchanged. This strategy results in pixel-wise aligned out-
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puts that closely match the original input. This pixel-wise
alignment may contribute to the lower FID and higher ID.
However, this approach may lead to a loss of color diversity
and realism. Additionally, fine-grained details, particularly
color-dependent features, may be inadequately captured, as
it neglects changes in the A and B channels.

B. Implementation Details
Shading Encoder. The shading encoder appends three
layers of Convolutional Neural Network (CNN) with
LeakyReLU activation on top of two StyleGAN2 blocks,
enabling the synthesis of shading tri-planes directly condi-
tioned on both an albedo tri-plane and a specified lighting
condition.
Temporal Consistency Network. The proposed Tempo-
ral Consistency Network leverages a combination of self-
attention within a branch and cross-attention across two
branches to enhance temporal consistency in processing
tri-plane sequences. The network is specifically designed
to operate on n pairs of albedo tri-planes and shading
tri-planes, where we empirically set n to be 5 for opti-
mal performance. The architecture of the Temporal Con-
sistency Network comprises four 8-headed transformers
with 4 layers, with each transformer block having a hid-
den size of 512. To introduce non-linearities and en-
hance the expressive power of the network, additional CNN
blocks with ReLU activation are placed before and after the
transformer-based processing. These CNN blocks employ
a kernel size of 1× 1.
Superresolution Module. We augment the superresolu-
tion module [1] by incorporating an extra convolutional
neural network (CNN) conditioned on a predicted albedo
tri-plane. In contrast to approaches such as [9], we refrain
from fine-tuning the backbone model. This strategic choice
not only saves time but also mitigates the risk of potential
model degradation during the fine-tuning process.
Data Preprocessing. For calculating camera pose, we
employ the method proposed by Deng et al. [2]. We imple-
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Figure B. Additional qualitative results obtained by applying our relighting technique to an input video through a lighting transfer task. The
reference image is displayed in the leftmost column, serving as a visual anchor, while the subsequent columns exhibit the corresponding
frames under distinct lighting conditions.

ment an exponential smoothing technique on the detected
five facial landmarks to mitigate errors introduced during
the keypoint detection process. This smoothing is applied
before image cropping and camera pose calculation.

Data Augmentation. In training the tri-plane dual-
encoders, we employ camera augmentation techniques sim-
ilar to those outlined in [9]. To train the temporal consis-
tency network, we randomly select two camera poses and

perform interpolation between them to simulate consecutive
frames.

Training. In the initial training stage, we adopt settings
from [9], exclusively activating the albedo branch. This
means that the model learns the intertwined representation
within the albedo tri-planes. In the subsequent stage, we
follow a fine-tuning approach inspired by [4]. Here, we
activate the shading branch to distill shading information
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Figure C. Our method is able to lift in-the-wild live stream to
relightable 3D faces. Captured portrait at each frame is recon-
structed, and rendered under a novel view and with a custom light-
ing condition for demonstration.

from the entangled albedo tri-planes. This refinement en-
sures that the albedo tri-planes exclusively contain albedo
information while the shading tri-plane encoder acquires
valuable insights into shading decomposition. To train the
albedo encoder, we freeze the shading tri-plane and replace
the predicted shading tri-planes with the corresponding
ground truth. After 32K training iterations, we freeze the
albedo tri-plane encoder, substituting the predicted albedo
with ground truth to exclusively train the shading encoder
for an additional 32K iterations. In the final stage, we
jointly train the albedo and shading tri-planes for 1.5M it-
erations. Furthermore, we unfreeze the albedo and shading
decoders, along with the super-resolution module, with the
intention of improving image quality in the overall system.
After the model converges, we freeze the dual-encoder and
train the temporal consistency network for 32K iterations.
This multi-stage training process allows for a nuanced and
comprehensive refinement of the model’s capabilities.
Inference. We leverage the benefits of mixed precision
and torch.compile across all network components during
inference, excluding the patch embedding layer of the Vi-
sion Transformer (ViT), tri-plane decoders, and volume
rendering. We sample 96 depth points per ray following
EG3D [1]. Our model exhibits efficient resource utilization,
consuming less than 4GB of GPU memory.

C. Evaluation Details
C.1. Baselines

For all the baselines, we use official codes and pre-trained
checkpoints.

To construct our baselines using PTI [8], we modify the
official code release (https://github.com/danielroich/PTI) to
suit EG3D. We optimize one generator for each video clip,
which involves iterating over the latent code in W+ space
of each frame for 500 iterations, followed by fine-tuning
the generator for a duration equivalent to 10 times the
number of frames. For PTI on NeRFFaceLighting, we

use the official code release and a pre-trained encoder
model (https://github.com/IGLICT/NeRFFaceLighting),
which initiates the optimization process using the output
latent code in W space from the pre-trained encoder as
a starting point. The latent code is optimized for 500
iterations, and the generator is fine-tuned for another 500
iterations. Furthermore, the spherical harmonic coefficients
are optimized for an additional 100 iterations.

For DPR [13], we use the official code release and a pre-
trained model (https://github.com/zhhoper/DPR).

For SMFR [3], we use the official code release and a pre-
trained model (https://github.com/andrewhou1/Shadow-
Mask-Face-Relighting).

For ReliTalk [7], we use the official code release
(https://github.com/arthur-qiu/ReliTalk) to preprocess the
dataset and subsequently conduct training. To ensure con-
sistency, we tailor the training epochs according to the video
length, aligning them with the example provided by the au-
thor, i.e., more epochs for shorter videos. This meticulous
adjustment results in an identical number of training itera-
tions.

For comparison with SIPR-W [10], TR [6], NVPR [12],
and Lumos [11], we apply our method to the input pro-
vided by the authors of Lumos and then compare our output
images with those respectively provided by the authors of
SIPR-W, TR, NVPR, and Lumos. The comparison is also
demonstrated in the accompanying video for clear evalu-
ation. We observe a misalignment in the provided envi-
ronment maps due to different coordinate conventions. To
address this, we rotate environment maps by 90 degrees
(counter-clockwise when viewed from the positive Z-axis)
for alignment. However, a slight misalignment persists, as
our coordinate system is constructed on the front of the hu-
man face, whereas others use a world coordinate system. To
rectify this, we further adjust the environment map by con-
sidering the yaw angle of the human face, ensuring correct
lighting direction alignment. Additionally, we re-normalize
the extracted spherical harmonic (SH) coefficients to main-
tain consistency across comparisons. To ensure alignment,
we recrop their outputs and utilize the background masking
technique from [5] on our results.

D. Discussion
Ethical Considerations. While our method provides in-
novative capabilities in manipulating the viewpoint and
lighting conditions of a portrait video clip, it is essential
to acknowledge the potential for misuse. To counteract this,
using advanced image analysis tools, like fake image detec-
tors and image watermarking, can help detect and prevent
deceptive practices.



E. Application
Live-stream Video Relighting System As shown in Fig-
ure C, we introduce a real-time system to lift live-stream
video into relightable 3D faces. Users are allowed to freely
adjust the camera parameters and lighting conditions. A
live demonstration is recorded and shown in the accompa-
nying video. We run our system on two NVIDIA GeForce
RTX 3090 GPUs, and achieve 20 fps for rendering one view
due to the preprocessing and transmission overhead. This
performance ensures that users can seamlessly and interac-
tively relight and render their faces under novel views.
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