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Organization. In this paper, we organize our supplementary materials as follows. In Section A, we provide detailed proofs
of our proposed Proposition 1. In Section C, we provide more results of our method. In Section B, we provide more visual
comparisons. In Section D, we provide more details and visual results of initialization optimization. In Section E, the
limitations and future work of our proposed method are discussed.

A. Proof of Proposition 1
Proof Based on existing diffusion model-based IR (e.g., [68]), the estimated x0 at time-step t can be formulated as:
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ᾱt

(
xt −

√
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where the second line is based on Eqn. (14). Based on DDIM [61], xt−1 can be updated by
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where ϵt is sampled from standard Gaussian distributionN (0, I), and γt is a parameter which can be set as 1. The third line is
based on Eqn. (15). Let c1t =
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Based on the formulation of xt−1, we can write xt−2 as
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where the second line follows Eqn. (16), the third line holds by the definition of Ψi
t, and in the last line, we define zs as:
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where the second line is based on the definitions of c2t and Ψi
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ᾱt−3√
ᾱs
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ᾱs

(
I −A†A

)
zs+1 +A†Azt−2, (20)

where the second line is according to the formulation of xt−2, and the third line is based on the definition of Ψi
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ᾱt−1(1− ᾱt)√
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ᾱt−1(1− ᾱt)√
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We complete the proof. Actually, the above equation can also be written as

xT−k =

√
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We extend Proposition 1 to the noisy inverse problem (i.e., y = Ax+ nσ) as follows.

Proposition 2 (Parallel sampling for noisy inverse problem) Given a degradation matrix A, a degraded image y and a
Gaussian noise image xT ∼ N (0, I), and assume that the scale factor Σt for range-space is a constant diagonal matrix,
i.e., Σ = Σt, for every state t, for k ∈ [1, . . . , T ], the state xT−k can be predicted by previous states {xT−k+1, . . . ,xT },
i.e.,
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1− ᾱt√
ᾱt
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1− ᾱtη and c2t :=

√
1− ᾱt
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ᾱt−1ΣA†y + c1t ϵt. (28)

Similar to Proposition 1, based on DDIM [61], xt−1, xt−2 and xt−3 can be calculated by

xt−1 =

√
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ᾱt

(
I −ΣA†A

)
xt + zt (29)

=

√
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ᾱT−k√
ᾱs
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B. More Implementation Details and Quantitative Results
More implementation details. Our method is a zero-shot diffusion model-based IR method and thus does not need training
DEQ function and diffusion models. Algorithm 1 is a standard implementation of Anderson acceleration. In Algorithm 1, we
sample a noise xT from Gaussian distribution N (0, I), and copy it into multiple copies. The noises are the same and they
are the initializations in the fixed point solver, denoted by x0

0:T−1, as shown in Figure 2. After K iterations, the sampling
chain will converge to x∗

0:T−1 where x∗
0 is our desired result. In Algorithm 2, we provide an initialization optimization via

DEQ inversion. The initialization is the same as Algorithm 1. For every initialization, we first use RootSolve(·) to obtain x∗
0

and its loss. Then we use the DEQ inversion Eqn. (13) to update xT . This update process terminates once the gradient norm
falls below a default threshold within a sufficiently large step S. To further improve the performance, we use [18] for SR on
ImageNet, and use [84, 86] for colorization, to provide the prior information in the intermediate state.

Super-Resolution. In the main paper, we present the SR results for ×2 and ×4 scales. In this experiment, we extend to other
scales. We compare our method with DPS [20], DiffPIR [87], DDRM [41] and DDNM [68] on ImageNet. Additionally, we
use bicubic upscaling as a baseline for SR. The quantitative results are shown in Table B1. For larger scales ×8 and ×16, our
method demonstrates significant superiority over most methods across various metrics. Specifically, when compared with the
competitive IR method DDNM, our method surpasses it by an LPIPS margin of up to 0.024 and a PSNR margin of up to 1.55
dB. Furthermore, our method requires only 15 sampling steps, compared to other methods.

Methods ×8 SR ×16 SR
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

bicubic 21.45 0.512 0.504 19.31 0.431 0.648
DDRM [41] 22.83 0.578 0.444 20.05 0.468 0.577
DPS [20] 18.30 0.382 0.520 16.40 0.315 0.572
DiffPIR [87] 20.40 0.440 0.476 17.72 0.347 0.553
DDNM [68] 22.36 0.558 0.414 20.02 0.459 0.563
DeqIR (Ours) 23.91 0.630 0.390 21.04 0.510 0.546

Table B1. Comparisons of zero-shot SR methods on ImageNet.

Deblurring. In the main paper, we have provided deblurring results for Gaussian and anisotropic kernels. In this experiment,
we further consider a uniform kernel to evaluate the performance of all models. Specifically, we evaluate the zero-shot IR
methods, including DDRM [41], DPS [20], DiffPIR [87], and DDNM [68], and employ A†y as a baseline. The quantitative
results in Table B2 demonstrate that our method outperforms others on all datasets. In comparison with DDNM [68], our
method exhibits a PSNR improvement of up to 0.65 dB.

Methods ImageNet CelebA-HQ
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

A⊤y 18.76 0.455 0.574 20.30 0.652 0.446
DDRM [41] 36.97 0.953 0.080 40.72 0.972 0.060
DPS [20] 20.68 0.497 0.414 25.44 0.709 0.260
DiffPIR [87] 22.71 0.494 0.499 28.11 0.777 0.264
DDNM [68] 38.66 0.968 0.050 43.13 0.981 0.044
DeqIR (Ours) 39.31 0.967 0.047 43.32 0.982 0.042

Table B2. Comparisons of zero-shot deblurring (uniform) methods.

Inpainting. In the main paper, we provided quantitative results for the image inpainting task specifically on CelebA-HQ
dataset. In this experiment, we extend our evaluation to ImageNet, comparing our method against state-of-the-art (SOTA)
inpainting methods, including DDRM [41] and DDNM [68]. Additionally, we establish A†y as a baseline for comparison.
Furthermore, we explore various inpainting masks, such as text and stripe masks, and present the corresponding results on
ImageNet in Table B3. Notably, our method exhibits significant performance improvement over the diffusion model DDRM
[41]. Moreover, with a fixed number of timesteps (25), our method surpasses DDNM [68], albeit falls short compared to
DDNM with 100 timesteps, as it incorporates more sampling information.

Methods Text mask Stripe mask
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

A†y 14.41 0.659 0.461 8.82 0.838 0.197
DDRM [41] 32.22 0.952 0.052 24.07 0.736 0.358
DDNM-25 [68] 32.71 0.958 0.039 25.58 0.788 0.280
DDNM-100 [68] 33.94 0.964 0.031 27.71 0.838 0.197
DeqIR (Ours) 33.03 0.958 0.046 28.53 0.816 0.213

Table B3. Comparisons of zero-shot inpainting methods on ImageNet.



More evaluation metrics (FID). In addition to PSNR, SSIM and LPIPS, we also consider FID, which is a commonly used
evaluation metric for assessing the quality of generated images. Although FID is a useful metric in many real-world scenarios,
there are certain circumstances where it may not be appropriate. In particular, I do not use FID to evaluate the image quality
for super-resolution and deblurring in the main paper because the ImageNet and CelebA-HQ datasets with 100 classes are
relatively small, and FID requires a sufficiently large dataset to accurately estimate the statistics of the data distribution. If the
dataset is small, the FID score may not be reliable due to high variance in the estimated statistics. In contrast, we use FID in
the colorization task since we can manipulate inputs using various Gaussian noises by altering seeds. Nevertheless, we retain
the ability to compute FID scores for super-resolution and deblurring tasks. In general, lower FID indicates higher quality of
images. As shown in Table B4, our method has superior FID performance compared to other approaches. Furthermore, we
observe a similar trend between FID and LPIPS in our comparisons, as illustrated in Table 1 in the main paper. Hence, we can
confidently rely on these FID results for assessing super-resolution and deblurring tasks.

Methods Bicubic SR Deblurring
2× 4× Gaussian anisotropic

Baseline 48.94 134.11 117.87 182.49
DGP [55] 172.72 273.65 231.00 267.71
DPS [20] 142.31 166.36 121.60 119.37
DiffPIR [87] 43.19 96.28 73.50 145.52
DDRM [41] 26.56 94.92 6.43 10.82
DDNM [68] 20.87 86.29 2.57 5.61
DeqIR (Ours) 13.89 59.70 2.41 5.40

Table B4. FID (↓) results of SR and deblurring tasks on ImageNet.

Application of Proposition 2. Based on Proposition 2, we apply our method to the task of restoring noisy images. Specifically,
our approach addresses noisy super-resolution for scaling factors of 2×, 4×, and 8×, denoted as Ours-σ. In our experiments,
we set the noise level to σ = 0.2. As shown in Table B5, our method consistently achieves higher PSNR values compared to
DDNM [68] across various scaling factors. Visual comparisons are provided in Figure B1, illustrating our method’s capability
to reduce noise and partially restore textures, leveraging the derived sampling formulation in Proposition 2.

Scale DDNM [68] Ours-σ

2×SR 24.91 25.23
4×SR 22.13 22.40
8×SR 19.70 19.95

Table B5. PSNR for noisy SR
DDNM Ours-𝜎 GTLQ

Figure B1. Results for noisy 4×SR.

GPU VRAM usage. In addition to comparing running times as presented in the main paper, we also analyze the running time,
GPU memory usage, and PSNR values of our method to understand the trade-offs between image quality and computational
costs. We conducted experiments with different timesteps for anisotropic deblurring on the ImageNe dataset, as shown in
Table B6. As timesteps increase, image quality improves, albeit at the expense of increased inference time and GPU memory
usage. Notably, for a timestep of 20, our method achieves the highest PSNR value. However, it also exhibits the longest
inference time and requires the largest GPU memory allocation. Given constraints on available memory, one may choose a
timestep of 15. This choice allows for the generation of images with a comparable PSNR to that of a timestep of 20, while
having more efficient inference times.

Methods Ours-10 Ours-15 Ours-20

Time (s) 12.11 16.53 21.19
Memory (G) 12.07 16.32 18.06
PSNR (dB) 38.58 39.21 39.47

Table B6. Comparisons of time, memory and PSNR.



C. More Qualitative Results
C.1. More Results on Super-Resolution

DDNM Ours GTDDRMDiffPIRDPSDGPLQ

Figure C2. Qualitative results of image super-resolution (×2) methods on ImageNet.

DDNM Ours GTDDRMDiffPIRDPSDGPLQ

Figure C3. Qualitative results of image super-resolution (×4) methods on ImageNet.

𝑨!𝐲 Ours GTLQGTOurs𝑨!𝐲LQ

Figure C4. Our qualitative results of image super-resolution (×2 (above) and ×4 (bottom)) on ImageNet.



DDNM Ours GTDDRMDiffPIRDPSDGPLQ

Figure C5. Qualitative results of image super-resolution (×2) methods on CelebA-HQ.

DDNM Ours GTDDRMDiffPIRDPSDGPLQ

Figure C6. Qualitative results of image super-resolution (×4) methods on CelebA-HQ.

𝑨!𝐲 Ours GTLQGTOurs𝑨!𝐲LQ

Figure C7. Our qualitative results of image super-resolution (×2 (above) and ×4 (bottom)) on CelebA-HQ.
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Figure C8. Our qualitative results of image super-resolution for different scales on CelebA-HQ.



C.2. More Results on Image Deblurring

DDNM Ours GTDDRMDiffPIRDPSDGPblur

Figure C9. Our qualitative results of image deblurring (gauss) on ImageNet.
DDNM Ours GTDDRMDiffPIRDPSDGPblur

Figure C10. Our qualitative results of image deblurring (anisotropic) on ImageNet.
DDNM Ours GTDDRMDiffPIRDPS𝑨!𝐲LQ

Figure C11. Our qualitative results of image deblurring (uniform) on ImageNet.



C.3. More Results on Image Inpainting
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Figure C12. Our qualitative results of image inpainting on ImageNet.
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Figure C13. Our qualitative results of image inpainting on CelebA-HQ.



C.4. More Results on Image Colorization
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Figure C14. Our qualitative results of image colorization on ImageNet.
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Figure C15. Our qualitative results of image colorization on CelebA-HQ.

C.5. More Results on Old Photo Restoration

OutputGray input OutputGray input OutputGray input OutputGray input

Figure C16. Our qualitative results of image colorization on real-world images.



C.6. Results on Other Image Restoration Tasks

In the main paper, we have conducted some typical image restoration (IR) tasks, including super-resolution, image deblurring,
image inpainting and colorization. For other IR tasks, we show that our method can be used in the compressed sensing
task. Specifically, we use the Walsh-Hadamard sampling matrix with a 0.5 compression ratio. We show the visual results on
ImageNet and CelebA-HQ in Figures C17 and C18. As we can see, with the severely compressed inputs, our method is able to
recover the high-frequency details while preserving the inherent identity of the content.
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Figure C17. Our qualitative results of compressed sensing on ImageNet.
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Figure C18. Our qualitative results of compressed sensing on CelebA-HQ.



C.7. Arbitrary Size Image Restoration

In our primary experiments, the input size is set at 3×256×256. However, for real-world applications, the input sizes may
vary. To address this variability, we demonstrate the adaptability of our model to accommodate inputs of arbitrary sizes. As an
illustration, we use an input size of 3×256×1024, a methodology that can be extended to accommodate diverse sizes. In line
with the approaches in [48, 68], we segment larger images into multiple overlapping patches and conduct individual tests on
each. Our method differs from [68] as our overlapped patches are smaller, resulting in reduced computational costs. Finally,
we consolidate the generated outputs to form conclusive results.

Figure C19. Our qualitative results of arbitrary-size image restoration on real-world images.



D. More Results on Initialization Optimization
In the super-resolution, we set S as 500 for convergence, and we use the ℓ2 loss to guide the generation process. In the loss,
we use the classical IR model (e.g., SwinIR [48]) as the supervision information such that the generated images can be close to
the given supervision information. In the colorization, we set S as 2k for convergence, and we use the perceptual loss to guide
the generation process. The results are shown in Figures D20 and D21. With the initialization optimization, PSNR can be
further improved, and the colorization has guidance to generate according to the reference images.
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Figure D20. PSNR improvement of using initialization optimization on ImageNet (we show the first 10 samples).
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Figure D21. Our qualitative results of colorization with initialization optimization.

E. Limitations and Future Work
There remain many limitations that can be studied in the future.
• Our method processes multiple timestep images in parallel, leading to large memory in GPU. It is necessary to reduce the

memory and boost the inference time.
• Our parallel sampling requires explicit forms of the degradation matrix A which is linear. For unknown, complex and

non-linear, we need to design pseudo-inverse by hand. This way requires multiple attempts and is cumbersome. In addition,
one can approximate the degradation matrix A by training a network on constructed pair data.

• Our initialization optimization via DEQ inversion needs many iterations for convergence. How to reduce the iterations and
accelerate remains a future work.

• Our method is a new zero-shot image restoration method. Moreover, the IR performance depends on the pre-trained denoiser.
The performance is not better than some supervised learning methods on a specific task. With the help of our model inversion,
one can train our DeqIR model to improve the performance of IR.


