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1. Broader Impacts
This paper exploited image synthesis with text-to-image
models. Because of their impressive generative abilities,
these models may produce misinformation or fake images.
So we sincerely remind users to pay attention to it. Be-
sides, privacy and consent also become important considera-
tions, as generative models are often trained on large-scale
data. Furthermore, generative models may perpetuate bi-
ases present in the training data, leading to unfair outcomes.
Therefore, we recommend users be responsible and inclusive
while using these text-to-image generative models. Note
that our method only focuses on technical aspects. Both
images and pre-trained models used in this paper are all
open-released.

2. Data Processing and Implementation Details
2.1. Data Processing for Ref-inpainting

Matching-based Masking. For the Ref-inpainting, we find
that the widely used irregular mask [2, 18, 19] fails to re-
liably evaluate the capability of spatial transformation and
structural preserving. Therefore, as shown in Figure 1(a), we
propose the matching-based masking method. Specifically,
we first utilize the scene info provided by MegaDepth [6] to
select out the image pairs which have an overlap rate between
40% and 70% Second, for each image pair, we use a feature
matching model [14] to detect matching key-points between
the images and assign each key-points pair a confidence
score. Next, we filter out those pairs with low confidence
scores with the threshold of 0.8. Then we randomly crop a
20% to 50% sub-space in the matched region and sample
15 to 30 key points as vertices to be painted across for the
final masks. The matching-based mask not only improves
the reliability during the evaluation but also facilitates the
performance in the training phase as in Table 3.

We split 505 pairs from MegaDepth [6] as the validation,
including some manual masks from ETH3D scenes [12]. For
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the multi-view testing set, we further filter all scenes and
retain the ones with at least 4 reference views. Thus there
are 482 images in the final multi-view testing set.

2.2. Data Processing for NVS

For the NVS, we first dilate the object mask and randomly
sample points in the enlarged mask bounding box to paint
the irregular mask. Then, we unite the dilated object mask
to completely cover target images as in Figure 1(b). We find
that local masking is still very important for fast convergence
and stable fine-tuning as empirically verified in experiments.
For the data processing on Objaverse [1], Zero123 [7] pro-
vided images including 800k various scenes with object
masks. For each scene, 12 images are rendered in 256×256
with different viewpoints. Following [7], the spherical coor-
dinate system is used to convert the relative pose ∆p into the
polar angle θ, azimuth angle ϕ, and radius r distanced from
the canonical center as ∆p = (∆θ, sin∆ϕ, cos∆ϕ,∆r),
where the azimuth angle is sinusoidally encoded to address
the non-continuity. In practice, we calculate the relative pose
between the first view and the target view for the pose input
to LeftRefill. For example, given a group of 4-view stitched
input images, we provide relative poses of view 0-to-1, 0-
to-2, 0-to-3, and 0-to-4, respectively. For the masking of
Objaverse images, we dilate the object mask and related
bounding box with 10 to 25 kernel size and 5% to 20% re-
spectively. Then we randomly sample 20 to 45 points to
paint the irregular masks.

We select 500 scenes from Objaverse as the validation,
while others are used as the training set. Note that there exists
an overlap between our validation and Zero123’s training
set [7], but our method still outperforms the official Zero123
as in the main paper.

2.3. Training Details

We show the training details in Table 1. LeftRefill is efficient
in being trained for various tasks. To further demonstrate
the effectiveness of LeftRefill, we provide the training log of
LeftRefill and Zero123 in Figure 2. Obviously, the contex-
tual inpainting-based LeftRefill enjoys a substantially faster
convergence and superior performance.
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Figure 1. The illustration of (a) matching-based masking for Ref-inpainting, and (b) masking strategy used for NVS on Objaverse [1].
Table 1. Training details of LeftRefill. NVS (4-view) and Ref-inpainting (4-view) are trained on ×8 and ×4 A800 GPUs respectively, while
others are trained on ×2 A6000 GPUs. NVS (4-view) is fine-tuned based on NVS (1-view).

Task Batch size
Learning rate

Steps
Prompt&LoRA Backbone

Ref-inpainting (1-view) 16 3e-5 / 6k
Ref-inpainting (2-view) 16 3e-5 / 6k
Ref-inpainting (3-view) 24 3e-5 / 16k
Ref-inpainting (4-view) 64 5e-5 / 16k
NVS-simple (1-view) 48 1e-4 1e-5 80k
NVS (4-view) 512 1e-4 3e-5 110k

Validation LPIPS Validation PSNR

Zero123 LeftRefill-simple

0.1607

0.5084

10.52

18.15

Figure 2. NVS training logs of LeftRefill and Zero123 [7] on
Objaverse [1] (batch size 48, learning rate 1e-5).
Table 2. Results of 1-view NVS on Objaverse. Zero123* was
re-trained with the same setting as LeftRefill-simple (batch 48).

Methods PSNR↑ SSIM↑ LPIPS↓ CLIP↑

Zero123* (re-trained) 14.316 0.802 0.3455 0.6549
LeftRefill-simple (prompt tuning) 16.385 0.855 0.2468 0.7107
LeftRefill-simple (LoRA) [4] 19.514 0.869 0.1534 0.7589
LeftRefill-simple (fine-tune) 20.508 0.875 0.1288 0.7763

2.4. Differences between Ref-inpainting and NVS

The proposed framework, LeftRefill, serves as a generalized
solution catering to both Ref-inpainting and NVS, as detailed

in our main paper. However, given the substantial dispar-
ities between NVS and Ref-inpainting tasks, we present a
comprehensive overview of the minor distinct implementa-
tions of LeftRefill tailored for each task. Notably, as the
inpainting fine-tuned SD suffers from a large gap in tackling
NVS directly, LeftRefill requires slightly more modifica-
tions to optimize its performance for NVS. The following
key adjustments were identified:

1) NVS needs to be fine-tuned for the whole LDM, while
Ref-inpainting only requires prompt tuning. Note that
both tasks could be addressed without test-time fine-tuning
through LeftRefill.

2) NVS needs another pose FC to encode relative pose infor-
mation to CLIP-H.

3) To enhance the performance of NVS, positional encod-
ing is added before each self-attention module of LeftRe-
fill. However, our experiments did not reveal significant
improvements when positional encoding was applied to
Ref-inpainting.

4) The self-attention module of multi-view NVS should be
processed with the block casual masking strategy for
autoregressive generation. In contrast, multi-view Ref-
inpainting does not require autoregressive generation since



Algorithm 1 Pseudo codes for block casual masking.
# view: the view number
# length: length of the sequence, usually be h*w

mask = zeros((view, length)) # [view,length]
mask[:, 0] = 1
mask = cumsum(mask.reshape(1, view * length), dim=1) # [1,view*length]
mask = (mask.T >= mask).float() # [view*length,view*length]
mask = 1 - mask # masked regions are 1, unmasked regions are 0
mask = mask.masked_fill(mask == 1, -inf) # let all masked regions to -inf

Algorithm 2 Pseudo codes for the attention visualization.
# x: [b,2hw,c], input feature for attention module (left:reference, right:target)
# mask: [b,2hw,1], input 0-1 mask; 1 means masked regions

q, k = matmul(x, Wq), matmul(x, Wk) # [b,2hw,c], project x to query (q) and key (k)
A = matmul(q, k.T) # [b,2hw,2hw], get attenion map
A = mean(A * mask , dim=1) # [b,2hw] get mean scores attended by masked regions
A = A.reshape(b,h,w)[:, :, :w//2] # [b,h,w], show reference attention score only

only one view needs to be generated.

Despite these nuanced differences between Ref-
inpainting and NVS within the LeftRefill framework, we
clarify that it remains a sufficiently generalized model capa-
ble of effectively handling reference-based synthesis.

3. Autoregressively Sequential Generation

To verify the generalization of our method, we generate more
groups of multi-view images through a single input view as
in Figure 16. Moreover, we test several real-world cases
with one RGB input in Figure 4. All poses are initialized
to [0.5π, 0, 1.5] for polar angle, azimuth angle, and radius
distance, respectively. The proposed LeftRefill can be well
generalized to real-world cases.

3.1. Adaptive Masking

One may ask that the masking strategy used in Figure 1(b)
suffers from shape leakages, which lead to unreliable met-
rics in the main paper. We should clarify that our method
can perform well only with the reference mask, which is
easy to get by the salient object detection [9]. Specifically,
we dilate the reference mask as Figure 1(b). Then, a few
DDIM steps [13] are used to generate a rough synthesis in
the target view. After that, we detect the foreground mask
based on the rough synthesis by [9] and further dilate this
mask for the second synthesis with full DDIM steps. The
adaptive masking can be well generalized to the NVS as
verified in Figure 3. All testing results in this paper without
specific descriptions are already based on adaptive masking.
Besides, we think that providing target masks according to
the distance and direction priors manually is also convincing
to address the challenging single-view NVS.

4. Supplemental Experimental Results

We show more impressive results of LeftRefill in Figure 6.

4.1. Supplemental Ablation Studies

Matching-based Masks and Noise Coefficient. On the left
of Table 3, we find that the matching-based mask enjoys
substantial improvement in the reference-guided inpainting.
Besides, setting the noise coefficient η = 1 achieves con-
sistent improvements in our LeftRefill even sampled as the
DDIM [13]. So all LDMs are worked under η = 1 without
special illustrations.
Prompt Initialization. We tried three initialization ways for
prompt tuning on the right of Table 3. The random initial-
ization performs worst. Both ‘token-wise’ and ‘token-avgs’
leverage text embeddings from a task-specific descriptive
sentence listed as follows. For the Ref-inpainting, the de-
scription is “The whole image is split into two parts with the
same size, they share the same scene/landmark captured with
different viewpoints and times”. For the NVS, the descrip-
tion is “Left is the reference image, while the right one is the
target image with a different viewpoint. The relative pose:”.
Note that our encoded pose embedding is concatenated to the
end of the task description embeddings. ‘Token-wise’ means
repeating descriptive sentences until the prompt length, while
each token is initialized for one prompt token. ‘Token-avgs’
indicates that all prompt tokens are initialized with the aver-
age of the descriptive sentence. Meaningful initialization is
useful for task-specific prompt tuning.
More Details about CFG. We remove the pose condition
with 15% to train the LeftRefill for NVS. Then the CFG
coefficient 2.5 is used during the inference. As verified in
Table 4 and Figure 8, appropriate CFG could improve the
performance with better pose control and shape generation,
while high CFG weights suffer from over-saturated issues.
Moreover, we find that CFG can also enhance the perfor-
mance of Ref-inpainting even without training with prompts
dropout as in Table 5. The LPIPS initially decreases but then
increases as the CFG decreases from 2.5 to 1.0, while the
PSNR and the SSIM keep increasing. We consider LPIPS as
the most crucial metric, as it aligns with human perception.



Figure 3. Long sequence synthesis from a single image (upper) with adaptive masking (bottom). The leftmost image and mask are the input
while others are generated.

Table 3. Ablation studies of Ref-inpainting on MegaDepth. Left: effects of matching-based masks and inference noise η. Right: effects of
different prompt initialization.

Configuration PSNR↑ SSIM↑ LPIPS↓

baseline 20.489 0.829 0.1029
+ Match mask 20.574 0.830 0.1010
+ η=1.0 20.993 0.837 0.0951

Prompt init PSNR↑ SSIM↑ LPIPS↓

Random 20.810 0.832 0.0998
Token-wise 20.852 0.833 0.1002
Token-avgs 20.926 0.836 0.0961

Table 4. Abaltions of CFG on Objaverse [1] NVS.

CFG training CFG weight PSNR↑ SSIM↑ LPIPS↓

× 1.0 20.310 0.872 0.1318
✓ 1.0 20.352 0.873 0.1322
✓ 1.5 20.528 0.874 0.1297
✓ 2.5 20.508 0.875 0.1288
✓ 5.0 20.077 0.873 0.1310

Table 5. Abaltions of CFG on MegaDepth [6] Ref-inpainting.

Ref Views CFG weight PSNR↑ SSIM↑ LPIPS↓

1

1.0 21.502 0.840 0.1030
1.5 21.482 0.840 0.0955
2.0 21.195 0.837 0.0946
2.5 20.761 0.832 0.0969

2

1.0 21.511 0.840 0.105
1.5 21.451 0.840 0.0977
2.0 21.092 0.836 0.0969
2.5 20.614 0.830 0.0997

3

1.0 21.771 0.844 0.0991
1.5 21.703 0.844 0.0912
2.0 21.356 0.840 0.0901
2.5 20.855 0.834 0.0929

4

1.0 22.334 0.851 0.0902
1.5 22.197 0.851 0.0836
2.0 21.779 0.847 0.0839
2.5 21.125 0.841 0.0894

Hence, when testing our model for Ref-inpainting, we opt to
set CFG to 2.0. Furthermore, qualitative CFG results shown
in the main paper also prove that 2.0 is a suitable trade-off
between geometry and texture.

Table 6. Quantitative Ref-inpainting results compared to Ref-only
ControlNet and side-by-side inpainting without prompt tuning.

PSNR↑ SSIM↑ LPIPS↓

Ref-only 19.95 0.822 0.143
Side-by-Side 20.34 0.827 0.130

LeftRefill 20.93 0.836 0.096

Attention Visualization with Increased References. We
visualize the attention map for increased reference views
under DDIM step 20 in Figure 9. More reference views help
to rectify both inpainted results and attention maps. Note that
we also show the result without any reference in Figure 9,
which can be seen as vanilla inpainting. The prompt tuning
fails to recover correct structures without reliable reference.

4.2. Results of Ref-inpainting

We provide more qualitative and quantitative results of Ref-
inpainting* in Figure 11, Figure 12, and Table 7. Since most
instances should be defined as object removal tasks without
ground truth, quantitative metrics are for reference only.
But LeftRefill still outperforms TransFill in FID and LPIPS
with perceptually pleasant results. Moreover, as shown in
Figure 11, LeftRefill enjoys good generalization in unseen
or occluded regions, because it gets rid of the constrained
geometric warping.
Ref-only ControlNet and Side-by-Side Inpainting. We
further compare our LeftRefill to the popular Reference-only
(Ref-only) ControlNet† and side-by-side inpainting (without
prompt tuning) as in Figure 10 and Table 6. However, they
failed to address Ref-inpainting, retaining lower priority com-

*Since TransFill [19] is not released, we send our images and masks to
the authors and take their inpainted results for the evaluation.

†https://github.com/Mikubill/sd-webui-controlnet/discussions/1236.
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Figure 4. Consistent real-world NVS results generated by LeftRefill.
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Figure 5. The illustration of task and view prompt tuning. This case
shows the situation of view number 3, the length of total prompts,
unshared view prompts, and shared task prompts are 50, 5, and 45,
respectively.

pared to other competitors in our main paper. Particularly,
Ref-only ControlNet just limits attention fields, struggling to
learn reasonable correlations. While side-by-side inpainting

Table 7. Ref-inpainting results on the real-world set [19].

Method PSNR↑ SSIM↑ FID↓ LPIPS↓

ProFill [16] 25.550 0.944 71.758 0.0848
TransFill [19] 26.052 0.945 62.493 0.0757

LeftRefill 25.733 0.942 61.276 0.0756

Table 8. The out-of-distribution comparison on Google Scanned
Objects [3].

Methods Ref-View PSNR↑ SSIM↑ LPIPS↓ CLIP↑

Zero123 [7] 1 18.794 0.851 0.1132 0.7270
LeftRefill 1 21.039 0.883 0.0909 0.7693

LeftRefill 2 22.090 0.893 0.0729 0.7925
LeftRefill 3 22.917 0.904 0.0595 0.8089
LeftRefill 4 23.169 0.904 0.0563 0.8185

Table 9. Inference speed of SD under 50 DDIM sampling steps.

Input size Sec/image Input size Sec/image

256×256 2.9172 256×512 2.9395

512×512 3.0715 512×1024 4.0205

only stitches reference and target together without explicit
instruction to control proper generation.

4.3. Results of NVS

Besides, we show some diverse NVS on Objaverse [1] in
Figure 13. Different random seeds are utilized to process the
DDIM sampling. LeftRefill can achieve reasonable results
with correct target poses. More qualitative results are in
Figure 7 and Figure 17.
Comparison on Google Scanned Objects (GSO). We com-
pare the proposed LeftRefill and zero123 [7] on the out-
of-distribution GSO dataset [3] in Table 8 and Figure 18.
LeftRefill enjoys good zero-shot generalization, which out-
performs zero123 with 1-view inputs. More reference views
can further improve the quality of LeftRefill, benefiting from
our multi-view-based NVS design and AR training.

5. Inference Speed

We provide the inference speed for different input resolu-
tions in Table 9. All tests are based on one 32GB V100
GPU with 50 DDIM steps. LeftRefill needs to stitch two
images together, which would double the input size. But the
inference time is not doubled as shown in Table 9. Note that
when the image size is smaller than 512, the difference in
inference costs is not obvious. Therefore, we think the pro-
posed LeftRefill’s inference cost is still acceptable in most
real-world applications.
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(c) Multi-view inpainting: inpainting one target view through multiple reference views (d) Multi-view synthesis: generating multiple target views from a single view

Figure 6. More impressive results of LeftRefill based on (a) Ref-inpainting, (b) NVS, (c) multi-view inpainting, and (d) multi-view synthesis.
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Figure 7. NVS on Objaverse [1] from a single reference image.

6. User Study
To evaluate the effectiveness of our LeftRefill in Ref-
inpainting. We further test the user study as the human
perceptual metric in Figure 14. Formally, 50 masked im-
age pairs are randomly selected from our test set which
are compared among SD [11], ControlNet [17]+match [14],
Perciver [5], Paint-by-Example [15], TransFill [19], and
LeftRefill. Although TransFill was not open-released, we
thank TransFill’s authors for kindly testing these samples
for us. There are 10 volunteers who are not familiar with
image generation attending this study. Given masked target
images and reference ones, we ask volunteers to vote for the
best recovery from the 6 competitors mentioned above. The
voting criterion should consider both the faithful recovery
according to the reference and natural generations of color
and texture. As shown in Figure 14, LeftRefill outperforms
other competitors.

7. Limitation
Although the proposed LeftRefill enjoys good performance
and geometric consistency in multi-view NVS, it still suf-
fers from the drawback of error accumulation as shown in
Figure 15. To eliminate this problem, we recommend pro-
viding a few more views (2,3,4) for more robust geometric
priors. Moreover, the extension to higher resolution and
improved efficiency for pre-trained models with superior
capacity (SDXL [8]) can be regarded as interesting future
work of LeftRefill.
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Figure 13. Diversity of the NVS on Objaverse [1] from a single reference image without multi-view guidance.
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Figure 17. Multi-view NVS results on Objaverse compared among the official Zero123 [7], one-view based LeftRefill-simple, and multi-view
based LeftRefill. Please zoom in for details.
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Figure 18. Multi-view NVS results on Google Scanned Objects [3] compared with official Zero123 [7] and multi-view based LeftRefill.
Please zoom in for details.
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