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A. Dataset and evalution metrics

We have conducted extensive experiments to evaluate
our MADTP framework, utilizing four diverse multimodal
datasets, namely NLVR2 [12], COCO [6], Flickr30k [13],
and VQA v2.0 [3]. These datasets encompass a wide range
of tasks and challenges, allowing us to assess the effective-
ness of the proposed framework comprehensively. More de-
tails are shown below.

A.1. NLVR2

The NLVR2 [12] dataset is curated to advance research
in computer vision and natural language processing for vi-
sual reasoning tasks. Its main objective is to enable models
to determine if two images share common objects or scenes
using provided natural language descriptions. With 107,292
examples of human-written English sentences grounded in
pairs of photographs, NLVR2 offers linguistic diversity and
visually complex images. The dataset is divided into sub-
sets: the training set contains 86,373 examples, the devel-
opment set consists of 6,982 examples, Test-P comprises
6,967 examples, and Test-U includes 6,970 examples. The
primary evaluation metric is Accuracy (Acc), reflecting the
proportion of correctly predicted image pairs. These eval-
uation metrics aid researchers in assessing model perfor-
mance, facilitating comparisons and guiding improvements.

A.2. COCO

The COCO [6] dataset is a valuable resource for both
image-text retrieval and image caption tasks, containing a
vast amount of annotated data. It includes 82,783 train-
ing images with 413,915 captions, 40,504 validation im-
ages with 202,520 captions, and 40,775 testing images with
379,249 captions. For the image-text retrieval task, Re-
call@k serves as a useful evaluation metric. It quantifies
the proportion of relevant results that are correctly retrieved
within the top-k ranked items. This metric is valuable for as-
sessing the model’s ability to recall relevant captions when
given an image query and vice versa. For the image caption
task, evaluation metrics such as CIDEr and SPICE are com-
monly used. CIDEr (Consensus-based Image Description
Evaluation) leverages consensus-based scoring by compar-
ing generated captions to multiple reference captions, pro-
viding a measure of the quality of the generated captions.
SPICE (Semantic Propositional Image Caption Evaluation)
considers the semantic structure of the captions by evaluat-
ing their ability to describe the image content accurately.

A.3. Flickr30k

The Flickr30k [13] dataset is widely utilized for image
caption and image-text retrieval tasks, providing a substan-
tial collection of images with associated captions. It con-
sists of three distinct subsets: a training set comprising
29,000 images and 145,000 captions, a validation set con-
taining 1,000 images and 5,000 captions, and a test set with
1,000 images and 5,000 captions. This dataset provides re-
searchers with a diverse range of images and associated tex-
tual descriptions, enabling the development and evaluation
of models for various image understanding tasks. In the ex-
periments of this paper, we focus on evaluating the perfor-
mance of the MADTP compressed models for the image-
text retrieval task using the Flickr30k dataset. To ensure
consistency with evaluation practices used in the COCO [6]
dataset, we employed the same Recall@k metric as the final
evaluation metric.

A.4. VQA 2.0

The VQA 2.0 [3] dataset serves as a widely adopted re-
source for Visual Question Answering (VQA) task, where
models are tasked with answering questions related to im-
ages. It is an extended version of the original VQA dataset,
addressing its limitations and providing a more compre-
hensive evaluation setup. The dataset is derived from the
COCO [6] dataset and is divided into three main subsets:
training, validation, and testing. The training set consists
of approximately 82,783 images with 443,757 associated
questions. The validation set contains around 40,504 im-
ages with 214,354 questions, while the testing set com-
prises about 81,434 images with 447,793 questions. No-
tably, the testing set is further divided into two distinct sub-
sets: test-dev and test-std. The test-dev subset is designated
for model development and fine-tuning purposes, while the
test-std subset is reserved for official evaluation and facil-
itates performance comparisons. Evaluation of models on
the VQA 2.0 dataset employs various metrics. The primary
metric is Accuracy (Acc), which measures the proportion of
correctly answered questions. Additionally, the dataset pro-
vides per-question-type and per-answer-type accuracy met-
rics, allowing for a more detailed analysis of model perfor-
mance across different question and answer categories.

A.5. GFLOPs

GFLOPs (Giga Floating Point Operations per Second) is
a widely adopted metric for quantifying the computational
costs of computer systems, particularly in the fields of deep



learning and artificial intelligence. It measures the number
of floating-point operations that a system can perform in
one second, with ”Giga” representing one billion (109) op-
erations. In this paper, the GFLOPs can vary for different
inputs due to the instance-level dynamic pruning scheme
employed by our MADTP. Therefore, in our experiments,
we opted to calculate the averaged GFLOPs over the entire
dataset to effectively measure the computational overhead
of the compressed model.

B. Implementation details
In our experiments, we employ the MADTP framework

to compress Vision-Language Transformers, specifically
the CLIP [9] and BLIP [5] models. These models are initial-
ized with pretrained weights obtained from the official im-
plementation of [10]. Table 1 and Table 2 present detailed
hyperparameter settings for each model during the compres-
sion training process. Further, Table 3 details the architec-
ture configures of the Vision-Language Transformers used
in different multimodal models. In our experimental setup,
we train the models using 8 A100 GPUs, with a fixed batch
size of 32. Note that, unlike the two-stage approach em-
ployed in Upop [10], our method is a one-stage approach
that eliminates the search stage, resulting in a significant re-
duction in training time. The MADTP framework exhibits
fast convergence, often achieving promising results within
just 1-2 epochs. For example, in the case of BLIP-VQA,
impressive performance is observed after only 3 epochs of
training. In terms of specific hyperparameters, the number
of learnable tokens is consistently set to 100, and the chan-
nel dimension is set to 768 across different models. Addi-
tionally, the hyperparameter α in the loss function is con-
sistently set to 0.1. To enable parallel training, we incor-
porated the ”max-keep” operation within each mini-batch
to retain crucial tokens. We will release the code, allowing
others to build upon our work.

Hyperparameters
CLIP [9]

COCO [6] Flickr30K [13]

Optimizer AdamW [8]
AdamW β (0.9, 0.999)
Weight decay 0.2
Batch size 32
Train epochs 5 10
Train LR 1e-5
Learnable token numbers K 100
Learnable token dimensions dk 768
Loss weight α 0.1
Prune operation max-keep
Train LR schedule CosineLRScheduler [7]
Data augmentation RandomAugment [2]

Table 1. Training hyperparameters for compressing CLIP-based
models on both COCO and Flickr30K datasets.

C. Supplementary Experiments and Analyses

C.1. Comparison with Token Pruning

In this study, we conduct a comparative analysis between
our MADTP and some recent token pruning techniques, in-
cluding CrossGET [11] and ELIP [4]. However, it should
be noted that these methods have not been formally pub-
lished and are currently only available on the arXiv website.
Hence, we do not include them in our main paper.

Detailed comparisons are shown in Table 4 and Table 5.
Specifically, CrossGET [11] introduces the use of cross
tokens as guidance for both modalities and employs the
single-modality token merge method [1] for accelerating
VLTs. On the other hand, ELIP [4] proposes a vision to-
ken pruning and merging method that removes less influ-
ential tokens based on the supervision of language outputs.
Both of these methods overlook the significance of modality
alignment guidance in the multimodal token pruning pro-
cess. Additionally, they belong to the category of static to-
ken pruning, which cannot achieve adaptive dynamic com-
pression for Vision-Language Transformers. In contrast,
our MADTP method introduces the Multi-modality Align-
ment Guidance (MAG) module, which enables modality
alignment guidance during VLT compression. Further, we
design the Dynamic Token Pruning (DTP) module, which
can achieve both input instance- and layer-wise compres-
sion of VLTs. Due to the differences in experimental set-
tings and challenges related to code release, we focus on
comparing the final compression results with these two
methods. The experimental results clearly show that our
MADTP achieves superior compression performance com-
pared to CrossGET [11] and ELIP [4], which provide strong
evidence for the effectiveness of our approach.

C.2. Orthogonality with Parameter Pruning

In this section, we conduct experiments to validate the
orthogonality of our MADTP framework with parameter
pruning techniques. The detailed results are presented in
Table 6. Here are the specifics of the experimental setup:
we firstly apply a parameter pruning approach [10] to the
BLIP model, using a compression ratio of 0.15 on the
NLVR2 dataset as the initial compression step. Subse-
quently, we further accelerate the compressed model using
our MADTP with a reduce ratio of 0.3. The objective of
this additional pruning step is to dynamically eliminate non-
critical tokens, thereby further enhancing model efficiency.
The thorough experimental results confirm the orthogonal-
ity of our MADTP framework with parameter pruning ap-
proaches. In detail, after applying our MADTP method,
the model exhibits a 0.26% increase in accuracy on the dev
set and a 0.17% increase on the test set. The GFLOPs of
the compressed model decrease by 20.8%, indicating a sub-
stantial reduction in computational costs. Remarkably, de-



Hyperparameters

BLIP-NLVR
[5]

BLIP-Caption
[5]

BLIP-VQA
[5]

BLIP-Retrieval
[5]

NLVR2
[12]

COCO
[6]

VQAv2
[3]

COCO
[6]

Flickr30K
[13]

Optimizer AdamW [8]
AdamW β (0.9, 0.999)
Weight decay 0.05
Batch size 32
Train epochs 15 5 3 5 10
Train LR 3e-6 1e-5 2e-5 1e-6 1e-7
Learnable token numbers K 100
Learnable token dimensions dk 768
Loss weight α 0.1
Prune operation max-keep
Train LR schedule CosineLRScheduler [7]
Data augmentation RandomAugment [2]

Table 2. Training hyperparameters for compressing BLIP-based models on five kinds of datasets.

Model
Input

resolution
Vision Transformer Language Transformer

number layers width heads number layers width heads

BLIP-NLVR [5] 384×384 2∗ 12 768 12 1 12 768 12
BLIP-Caption [5] 384×384 1 12 768 12 1 12 768 12
BLIP-VQA [5] 480×480 1 12 768 12 2 12 768 12
BLIP-Retrieval [5] 384×384 2 12 768 12 2 12 768 12
CLIP [9] 336×336 2 24 1024 16 2 12 768 12

Table 3. Architecture configures of all models used in our experiments. The superscript ∗ indicates 2 Transformers share parameters.

Image→Text Text→Image
Approach

R@1 R@5 R@10 R@1 R@5 R@10
GFLOPs

ToMe‡ [11] 90.8 99.2 99.5 78.1 95.3 97.7 -
CrossGET [11] 92.1 99.7 99.8 79.6 97.5 98.0 -

UPop [10] 93.2 99.4 99.8 80.5 95.4 97.6 201.1
MADTP (Ours) 93.9 99.5 99.8 83.3 97.0 98.5 178.8

Table 4. Performance comparisons of different methods when compressing CLIP on the Flickr30K dataset of the Image-Text Retrieval
task. The R@1, R@5, and R@10 are the higher the better. The best results are in bold. The symbol ‡ represents the model implementation
is derived from CrossGET [11].

Flickr30K COCO
Image→Text Text→Image Image→Text Text→ImageApproach

R@1 R@5 R@10 R@1 R@5 R@10
GFLOPs

R@1 R@5 R@10 R@1 R@5 R@10
GFLOPs

EViT† [4] 87.3 98.5 99.4 75.1 93.5 96.4 48.0 66.8 88.9 93.9 50.8 77.9 86.3 48.0
ToMe† [4] 91.5 98.8 99.4 80.5 95.6 97.9 69.8 71.5 91.6 95.9 55.3 81.2 88.7 69.8
ELIP [4] 92.2 99.1 99.7 80.3 96.0 98.0 93.4 72.0 91.9 95.9 56.3 81.2 88.7 93.4

UPop [10] 94.0 99.5 99.7 82.0 95.8 97.6 91.0 77.4 93.4 97.0 59.8 83.1 89.8 88.3
MADTP (Ours) 95.1 99.5 99.7 82.3 96.2 98.0 74.5 79.1 94.2 97.2 60.3 83.6 89.9 87.4

Table 5. Performance comparisons of different methods when compressing BLIP on the Flickr30K and COCO datasets of the Image-Text
Retrieval task. The R@1, R@5, and R@10 are the higher the better. The best results are in bold. The symbol † represents the model
implementation is derived from ELIP [4].

spite these improvements, the model’s parameters only in-
creases by a mere 0.4%. Therefore, combining both prun-
ing schemes in a joint compression strategy yields outstand-

ing compression results. Our future work involves integrat-
ing a parameter pruning scheme into the proposed MADTP
framework for comprehensive VLT compression.



Approach
Reduce ratio

(Params)
Reduce ratio
(GFLOPs)

Dev Acc Test Acc Params GFLOPs

Uncompressed - - 82.48 83.08 259.45 132.54

Parameter pruning [10] 0.15 - 81.54 82.35 219 117.32
Parameter pruning [10] + MADTP 0.15 0.3 81.80 82.52 220↑0.4% 92.75 ↓20.8%

Table 6. The orthogonality of our MADTP framework with parameter pruning techniques. Compress BLIP on the NLVR2 dataset for visual
reasoning task. Reduce ratio (Params) represents the proportion of model parameter compression, and Reduce ratio (GFLOPs) denotes
the compression ratio of model computational costs. The experimental results demonstrate that combining our approach with parameter
pruning techniques yields superior compression performance.

Approach Modality Dev Acc Test Acc GFLOPs

Uncompressed - 82.48 83.08 132.54

vision only 80.04 80.50 67.69
language only 74.67 75.01 129.54STP

vision and language 78.08 77.61 68.31

vision only 82.27 82.45 66.41
language only 77.33 77.58 128.98MADTP

vision and language 81.97 82.85 66.16

Table 7. Ablation studies of MADTP on different modalities.

C.3. Compression on different modalities

We also perform ablation studies on applying the pro-
posed MADTP method to compress different modalities for
VLTs, and the detailed results can be found in Table 7.
Due to the varying importance of different modalities in ac-
complishing the final task and the different computational
costs associated with each modality branch, individually
compressing different modalities has a significant impact
on the overall performance of the compressed model. In
our experiment, we separately compressed various modal
branches of the BLIP model on the NLVR2 dataset, includ-
ing the only vision branch, only language branch, and the
combined vision and language branch. The experimental
results indicate that the visual branch has higher token re-
dundancy, allowing for significant reductions in computa-
tional costs through token pruning. Conversely, the text
branch has lower computational cost and is essential for
multimodal tasks. Thus, compressing the text branch has a
more substantial impact on model performance, albeit with
minimal decrease in GFLOPs. These observations aligns
with the finding of the CrossGET [11] method. However,
our MADTP method additionally accounts for modality
alignment and integrates an adaptive token pruning mecha-
nism, facilitating collaborative compression of both modal-
ities and achieving superior compression results.

C.4. Effect of Hyperparameters

In this section, we conduct additional ablation studies to
validate the hyperparameters that affect the performance of
MADTP. Firstly, we extend our analysis about the Token
Importance Scores(TIS), as shown in Table 8. Furthermore,

Components of MADTP Dev Acc Test Acc GFLOPs

TIS

only w/Sself 81.49 82.13 70.46
only w/Stoken 80.68 81.00 66.74
only w/Scls 81.62 82.25 69.67
Sself & Stoken 81.79 82.32 67.08
Sself & Scls 81.40 82.35 70.67
Stoken & Scls 81.76 82.41 66.19
Sself & Stoken & Scls 81.97 82.85 66.16

Table 8. Results of compressing the BLIP model on the NLVR2
dataset with different token importance scores.

Setting Batch size Temperature Test Acc GFLOPs

Baseline 16 1.26 82.35 67.62

Inference

1
1.26 77.90 38.46
0.44 81.86 67.04

4
1.26 81.04 52.13
0.89 82.20 66.97

32
1.26 82.36 75.08
1.43 82.08 68.37

Table 9. The performance of the 0.5 compressed BLIP model on
NLVR2 dataset when using different batch sizes during inference.
Our baseline model is trained with a batch size of 16, and the
GFLOPs with different batch sizes can be adjusted by controlling
the temperature to maintain consistency with the baseline.

Batch size Sorted Dev Acc Test Acc GFLOPs

1
N 76.96 77.90 38.46
Y - 77.74↓ 38.50

4
N 80.48 81.04 52.13
Y - 81.16↑ 53.36

16
N 81.64 82.35 67.62
Y - 82.59↑ 67.61

32
N 81.96 82.36 75.08
Y - 82.74↑ 73.78

Table 10. Performance of the 0.5 compressed BLIP model on
the NLVR2 dataset when using different instance order. Sorted
Y means we first sort the instances according to their difficulty
and then use the compressed model for inference.



STP MADTP

Text: one panda posed on its back with at least one front paw raised and mouth open.

Text: In at least one image there are three white wooden window blinds.

Image

Text: One of the images shows two guinea pigs diving into a pool.

STP MADTPImage

Text: One image shows a dog missing a front leg.

density=0.11

density=0.11

density=0.11

density=0.11

density=0.27 density=0.26

density=0.28 density=0.28

Text: The image on the right contains no more than one dog. Text: Two standing penguins bend their necks and beaks downward toward each other.

Text: A dog is sitting on grass and is surrounded by yellow flowers in one of the ... Text: The right image shows multiple penguins standing in front of snowy peaks.

density=0.11density=0.11

density=0.11 density=0.11

density=0.29 density=0.31

density=0.31 density=0.33

Figure 1. Visualization comparisons of token pruning results between STP and MADTP, providing strong evidence that our approach
emphasizes modality correlation, effectively avoids pruning crucial tokens and dynamically adjusts pruning ratio according to inputs.

Figure 2. Comparisons of MADTP token pruning in each trans-
former block for samples of different instance complexity levels,
including Easy, Middle, and Hard samples. The density represents
the ratio of retained tokens to the total number of original tokens.

we discover that our MADTP is significantly influenced by
the batch size during the inference stage, as demonstrated in
Table 9. The reason behind this observation is that we adopt
the max-keep pruning strategy in the token pruning process,
which selects the maximum number of tokens to be retained
across input instances in a mini-batch. Therefore, when us-
ing a smaller batch size for model inference, the GFLOPs
significantly decrease, leading to a decline in performance.
However, by adjusting the temperature parameter T , we can
increase the GFLOPs with the smaller batch size to match
the baseline model, thereby restoring the performance. This
experiment proves the strong correlation between the com-
pressed model’s performance and GFLOPs. In addition, as
shown in Table 10, we observe that sorting the input in-
stances based on their difficulty during inference leads to
improved performance. This finding suggests that applying
the max-keep strategy to sorted input instances can further
enhance compressed models’ performance.



Text: The left image contains a large wooden cabinet placed to the left of several wooden chairs.

Text: There is a colorful balloon floating upward high in the sky.

Text: Each image includes two Schnauzers lying on the grass.

Easy
Samples

Middle
Samples

Hard
Samples

density=0.19

density=0.27

density=0.42

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

Block 8 Block 12

Image

Block 7 Block 9 Block 10 Block 11

Figure 3. Visualization of the compressed results of MADTP on samples with different levels of instances complexity, including Easy,
Middle, and Hard samples. The density represents the ratio of retained tokens to the total number of original tokens.

C.5. Visualization of MADTP

In this section, we visualize the token pruning results of
the proposed MADTP framework using a compressed BLIP
model with a reduction ratio of 0.5 on the NLVR2 dataset.
In Fig. 1, we present an extended visualization comparison
between Static Token Pruning (STP) and our MADTP ap-
proach. It is evident that our MADTP emphasizes the corre-
lation between modalities and successfully avoids pruning
critical tokens. Additionally, we further visualize MADTP
token pruning in each transformer block for samples with
different instance complexity levels, including Easy, Mid-
dle, and Hard samples. Fig. 2 illustrates the token den-

sity in the visual branch of VLTs at each transformer block,
while Fig. 3 showcases the specific positions of token prun-
ing in each block. These visualizations demonstrate the
adaptive dynamic compression capability of the proposed
MADTP framework for different input instances. Finally,
we show additional visualizations of token compression us-
ing the MADTP framework for easy and hard samples in
Fig. 4 and Fig. 5. These visualizations further validate the
effectiveness of MADTP in dynamically compressing to-
kens for Vision-Language Transformers.



Text: Each image includes one hog standing on all fours in a field, and no image includes a human.

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 8 Block 12Image

Text: Left image shows a single jellyfish with a spotted mushroom-look cap and tendrils trailing downward.

Text: A dog is sitting on grass and is surrounded by yellow flowers in one of the images.

Text: Both crabs are standing on solid ground.

Text: Each dog is wearing something around its neck, and at least one dog is sitting upright.

Text: In one image, a dung beetle is on top of a ball.

Text: In at least on image there is a single hyena with its face slightly forward.

Text: In the image there is a leopard galloping forward.

Text: The image shows a standing dingo gazing leftward.

Text: At least one panda is lying on its back.
Figure 4. Visualization of our MADTP’s compressed BLIP results on Easy Samples from the NLVR2 dataset at each transformer block.



Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 8 Block 12Image

Text: The image shows a large herd of zebras running and splashing across a wet green field.

Text: The left image shows a line of zebras facing the same direction and drinking while standing in water.

Text: There are canada geese in each image and none of them are flying or swimming.

Text: Large yellow chandeliers hang from the ceiling inside a book store.

Text: The right image features at least one orange-and-white clownfish above pale anemone tendrils.

Text: There is a swimming pool in one image.

Text: At least one cheetah is chasing something.

Text: A fuzzy gray baby penguin is near adult penguins in at least one image, and two standing penguins bend their necks and beaks downward toward...

Text: Knives are seen in the background in the right pic.

Text：At least five light-colored dogs are running forward over a field of grass in the left image.

Figure 5. Visualization of our MADTP’s compressed BLIP results on Hard Samples from the NLVR2 dataset at each transformer block.
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