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In this supplementary material, we complement our main
paper with additional details. It begins with an introduction
to the notations used in our paper in Sec. 1. The follow wing
section, Sec. 2, discusses our network architectures, high-
lighting key design choices and their impact. This is com-
plemented by Sec. 3, which provides essential implementa-
tion details. Then, we provide more comparisons between
our approach and state-of-the-art methods in Sec. 4, offer-
ing insights into our model’s strengths and improvements.
We also provide an additional ablation study to verify the
usefulness of latent set diffusion on the setting of 4D shape
reconstruction from sparse and noisy point clouds. Finally,
in Sec. 5, we demonstrate the real-world applicability of our
model, underscoring its practical effectiveness.

1. Notations

In this paper, we use the following notations, as summa-
rized in Tab. 1. The symbol T represents the sequence
length, with the superscript t indicating the time step of a
frame in the sequence. Our network’s input is a sparse or
partial point cloud, denoted as P = {Pt}T−1

t=0 , where each
frame Pt comprises L points, serving as conditions in ref-
erence time. The sets S,D, C represent shape codes, de-
formation codes, and conditional codes, respectively, with
each i-th code denoted by the corresponding lowercase let-
ter. The mesh is symbolized by M = {V,F}, where V
and F correspond to the vertices and faces set of the mesh.
Furthermore, X refers to surface points from ground truth
meshes for learning shape, and Xd refers to corresponding
sampled points by FPS. We dedicate Xsrc,Xtgt for repre-
senting the sampled surface points for learning deformation,
and Xd

src,X
d
tgt refer to sampled points by FPS. Moreover,Q

represents the set of query points, where q refers to a point
inside the point set, and q′ is the output by feeding the query
point into the deformation network.

*Equal Contribution.
†Corresponding author.
‡Work done during master’s thesis.

2. Network Architectures
The inputs of our model are a sequence of T frames of
sparse or partial noisy point clouds, represented by P =

{Pt}Tt=1, where Pt =
{
pi ∈ R3

}L

i=1
, L represents the

number of points. The goal is to reconstruct continuous
3D meshes with high fidelity, denoted as {Mt}Tt=1 =
{Vt,F t}Tt=1, where Vt and F t refer to the set of vertices
faces of the reconstructed mesh at time frame t.

2.1. Shape Diffusion

In the shape diffusion part, we leverage the first frame of the
sequence, P1, to reconstruct the object shape. As illustrated
in Fig. 1, this process is divided into two distinct networks:
(a) Shape Autoencoder Network and (b) Shape Vector Set
Diffusion Network.

Shape Autoencoder To optimize computational effi-
ciency, we adopt the furthest point sampling (FPS) tech-
nique. This method pinpoints crucial points within a point
cloud, thereby thinning its density.:

Xd = FPS(X) (1)

Subsequently, a cross-attention block, designed to compute
attention weights across various points, is employed. This
block fuses the features of the subsampled points and gen-
erates a shape latent set, denoted as S = {si ∈ RC}Mi=1.
Here, M represents the overall count of codes and C de-
notes their dimensionality. In this process, the positional
embeddings derived from the points after FPS sampling are
utilized as the query, whereas those obtained before FPS
sampling serve as the key and value in the attention mech-
anism. Also, consistent with the latent diffusion framework
proposed by [8], our model incorporates KL-regularization
within the latent space. This regularization strategy plays
a crucial role in modulating feature diversity, ensuring the
preservation of high-level features. The query points are en-
coded and passed to the cross-attention block with the gen-
erated shape code. The resulting fused code is then mapped
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for i = 1, ..., 12

Figure 1. Network architecture of Shape Diffusion

to a dimension of 1 via a fully connected (FC) layer, pro-
viding the predicted occupancy value for the query points.

Shape Vector Set Diffusion Nosied shape codes Ŝ are
sent to the denoising neural network. The denoiser consists
of two blocks: The space-attention block facilitates posi-
tional information exchange among M codes in different
positions, while the condition-attention block injects infor-
mation from sparse or partial points (conditional input). Af-
ter repeating this process, we get the denoised latent set S.

2.2. Synchronized Deformation Diffusion

As shown in Fig. 2, the deformation diffusion also contains
two parts: Deformation Autoencoder Network and Synchro-
nized Deformation Vector Set Diffusion Network.

Deformation Autoencoder In the deformation autoen-
coder, both surface and near-surface points of different
frames are sampled according to the same face indexes,
which ensures the correspondence within a sequence. These
point cloud frames are pairwise paired together, each with a
source point cloud Xsrc and a target point cloud Xtgt.

Similarly to shape diffusion, to ensure the correspon-
dence between the source point cloud and the target point
cloud, we use the same FPS for downsampling. We have:

Xd
src = FPS(Xsrc) (2)

Xd
tgt = FPS(Xtgt) (3)

As shown in Fig. 2 (a), after obtaining the key points of
the source and target point clouds. Positional embeddings
of the FPS downsampled and original point clouds are con-
catenated along the last dimension to preserve spatial con-
sistency, where PosEmb: : R3 → RM refers to positional
embedding functions:

PE = Concate (PosEmb(Xsrc),PosEmb(Xtgt)) (4)

PEd = Concate
(
PosEmb(Xd

src),PosEmb(Xd
tgt)

)
(5)

We employ the cross attention CrossAttn(Q,KV )
throughout our method, where Q denotes the query, and
KV denotes the key-value pair. Similarly, we use KL-
divergence to retain high-level features to facilitate the
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Figure 2. Network architecture of Synchronized Deformation Diffusion.

learning of the diffusion model. Here we get the deforma-
tion latent set D = {di ∈ RC}Mi=1:

D(Xsrc,Xtgt) = CrossAttn(PE,PEd) (6)

At inference time, we take the surface points of the source
mesh as query points. The interaction between the predicted
deformation codes sampled from the Shape Vector Set Dif-
fusion Network, and the positional embedding of query
points through cross-attention yields the approximated la-
tent features. Subsequently, a linear layer derives the pre-
dicted positions of the target point cloud.

Synchronized Deformation Vector Set Diffusion In this
stage, the sparse noisy input point clouds {Psrc,Ptgt} pairs
green blocks in Fig. 2 (b) are processed with a conditional
encoder. The conditional encoder has the same structure
with the deformation encoder, through which we get the
conditional latent set Ct(P1,Pt) = {ci ∈ RC}Mi=1. Si-
multaneously, the shape latent set from the deformation en-
coder is added with Gaussian noise and sent to the denoiser
of the diffusion model. As illustrated in the figure, after
the space self-attention block, the conditional latent set is

injected into the cross-attention block. Following the cross-
attention along the temporal domain, and after 18 repeti-
tions, we get the denoised deformation codes.

3. Implementation Details

3.1. Dataset

Train/Val/Test Split The datasets used in our method, D-
FAUST [2] and DT4D-A [4], encompass a diverse range
of human and animal motions, respectively. D-FAUST in-
cludes human motions like “chicken wings”, “shake shoul-
ders”, and “shake hips.” In contrast, DT4D-A features an-
imal animations such as “bear3EP death”, “bunnyQ walk”,
and “deer2MB rotate.” Following the approach in NSDP
[10] and CaDeX [3], we organize our train and validation
sets with data from seen identities performing seen motions.
The test set is divided into two categories: unseen motions
of seen identities and seen motions of unseen identities.
Specifically, for DT4D-A [4], our training set comprises
835 sequences, the validation set includes 59 sequences,
and the test set is divided into 89 sequences for unseen mo-
tions and 108 sequences for unseen identities. Similarly, in
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Symbol Meaning

T # frames

P = {Pt}T−1
t=0

Sparse point clouds as input for
diffusion models

Pt =
{
pi ∈ R3

}L

i=0
A frame of sparse point clouds

L # points in sparse point clouds

S = {si ∈ RC}Mi=0
One set of shape codes with M
latent codes

si i-th shape code

D = {di ∈ RC}Mi=0
One set of deformation codes with
M latent codes

di i-th deformation code

C = {ci ∈ RC}Mi=0
One set of conditional codes with
M latent codes

ci i-th deformation code

C # latent code channels

V,F Vertices and faces of mesh

X
Points from meshes as
input for shape autoencoder

Xd
Points sampled by FPS from
meshes as input for shape
autoencoder

Xsrc,Xtgt

Points from source and
target meshes as input for
deformation autoencoder

Xd
src,X

d
tgt

Points sampled by FPS from
source and target meshes
as input for deformation
autoencoder

Q Query points set

q Query point

q′ Deformed query point

Table 1. Notation table includes the mathematical symbols we
mentioned in the paper.

D-FAUST [2], the training set contains 104 sequences, the
validation set has 5 sequences, and the test set includes 9
sequences for unseen motions and 11 sequences for unseen
identities.

Data Processing Our data processing strategy is designed
to facilitate the learning of shape encoding and deformation.
We utilize two distinct datasets for this purpose.

For shape encoding, our process begins with the applica-

z x

y

Partial observation zx

y

Figure 3. The camera setup for the generation of partial observa-
tion in D-FAUST [2] and DT4D-A [4] dataset.

tion of the Butterfly Subdivision method [11], an interpolat-
ing subdivision technique widely used in computer graph-
ics for generating smooth surfaces from polygonal meshes.
Following the methodology outlined in [6], we center and
rescale all meshes to ensure that the bounding box of each
mesh is centered at the origin (0, 0, 0) and the longest edge
is normalized to a length of 1. We then uniformly sample
200k points within this normalized cube and compute their
occupancy values to determine whether they lie inside or
outside the mesh, as detailed in [6]. To enhance our model’s
understanding of surface properties, we introduce Gaussian
noise at two different levels to the mesh surface points. This
process generates 200k near-surface points, whose occu-
pancy values are also computed. These points, combined
with an additional 200k points sampled directly from the
mesh surface, constitute the input to our network, provid-
ing a comprehensive set of data points for both the uniform
space and near-surface regions.

For deformation encoding, we depart from using the But-
terfly Subdivision method [11], which was applied in the
context of shape encoding. This choice is primarily driven
by the need to maintain spatial correspondence between
points. To achieve this, we directly sample 200k surface
points from the mesh. Subsequently, we sample an equal
number of near-surface points. These near-surface points
are generated along the normal direction of each surface
point, with a predefined distance that ensures closeness to
the surface while preserving the detail of the mesh struc-
ture. Crucially, both sets of points are selected based on the
same face indices of the mesh. This methodical selection
guarantees that the spatial correspondence is not disrupted,
allowing for a more accurate representation of deformation.

Within the context of the partial challenge configura-
tion, a camera was positioned with a fixed viewing angle
of 45 degrees directed towards the human or animal subject
within the scene. This positioning was undertaken to cap-
ture a partial depth observation of the subject, as illustrated
in Figure 3. Additionally, in the more restricted partial set-
ting, only half of the human body was observed. This was
accomplished by intentionally selecting vertex indices cor-
responding to the upper body of the SMPL model [5].
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D-FAUST Unseen Motion Unseen Individual
IoU↑ CD↓ Corr↓ IoU↑ CD↓ Corr↓

W/o. diffusion 79.1% 0.070 0.076 69.3% 0.089 0.098
Full 90.7% 0.033 0.047 83.7% 0.045 0.064

Table 2. Quantitative comparisons of ablation study on the diffu-
sion model from sparse and noisy point clouds on D-FAUST [2].

t
Input

W
/o.diffusion

Full

Figure 4. Qualitative comparisons of ablation study on the diffu-
sion model from sparse and noisy point clouds on D-FAUST [2].
Our method with diffusion model exhibits lower errors.

4. Additional Results
4.1. Effectiveness of diffusion models

To further demonstrate the efficacy of the diffusion model,
we expanded our ablation study to include 4D Shape Re-
construction from sparse and noisy point cloud sequences,
utilizing the D-FAUST dataset [2]. This study provides a
more comparative analysis against variants of one-step re-
gression integrated with diffusion models, where the input
comprises sequences of point clouds of size L = 300. Fig. 4
and Tab. 2 present both quantitative and qualitative compar-
isons. The results clearly indicate that incorporating the dif-
fusion model significantly reduces reconstruction error and
yields more precise motion outputs.

4.2. 4D Shape Reconstruction

In evaluating our model’s performance in 4D shape recon-
struction, we adopted a comprehensive set of metrics: Inter-
section over Union (IoU), chamfer distance, and correspon-
dence distance. These metrics were chosen for their rele-
vance in accurately quantifying shape reconstruction qual-

BEHAVE OFlow LPDC CaDeX Ours

Chamfer↓ 0.137 0.201 0.126 0.062

Table 3. Quantitative evaluation on real dataset BEHAVE [1]. The
chamfer distance is computed from the reconstructed mesh and
partial point cloud input.

ity. IoU measures the overlap between predicted and ground
truth shapes, Chamfer distance quantifies the average clos-
est point distance, and correspondence distance evaluates
the accuracy of point-wise correspondences. These met-
rics align with the standards set in recent studies, such as
those by LPDC [9] and OFlow [7]. We present the aver-
age metrics across all 17 frames for both D-FAUST [2] and
DT4D-A [4] datasets. The quantitative results are shown in
Tab. 4, Tab. 5, Tab. 6, and Tab. 7. Our analysis reveals that
our model demonstrates superior generalization capabilities
in scenarios involving both unseen motions and unseen in-
dividuals. Specifically, it outperforms existing approaches,
including OFlow [7], LPDC [9], and CaDeX [3], across all
evaluated metrics for all time frames. This advancement un-
derscores the efficacy of our approach in handling the com-
plexities of 4D shape reconstruction. Furthermore, qualita-
tive results in Fig. 7 and Fig. 8 show a selection of 8 frames,
chosen to represent a diverse range of motions and shapes,
from the total 17 to illustrate our model’s performance. In
each figure, the upper part displays the results for unseen
motion, while the lower part corresponds to unseen individ-
uals. We utilize a chamfer distance error map for visual-
ization, where blue indicates lower error and red signifies
higher error. The color-coded error map, computed based
on the distance between predicted and ground truth points,
provides an intuitive understanding of the model’s accuracy
in different scenarios. Our model not only has an overall
smaller error on both datasets, but also captures motions
more accurately.

4.3. 4D Shape Completion
In the more challenging task of 4D shape completion from
partial point clouds, our model shows noticable improve-
ments over existing state-of-the-art methods. The quantita-
tive results, as illustrated in Fig. 9 and Fig. 10, demonstrate
substantial performance enhancements, with a lower error
rate in scenarios involving unseen motions and individuals.
This underscores the robustness of our approach. Also, we
present more results about the challenging half human set-
ting. The result is demonstrated in the Fig. 6.

5. Real-world Data Test
In this section, we validate our model using data from the
real-world BEHAVE dataset [1], employing four Kinect
RGB-D cameras to capture RGB color and depth frames.
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RGB
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Input OFlow LPDC CaDeX Ours

Figure 5. 4D Shape Completion on the BEHAVE dataset [1].

In our case, we utilize a single view from a fixed camera to
align with our previous partial scan setting. Similarly, the
depth map is back-projected into 3D point cloud, serving
as a partial input for our model. In Fig. 5 and Tab. 3, we
present a qualitative and quantitative evaluation of our re-
construction process with the corresponding input and refer-
ence RGB frame. The results demonstrate the robustness of
our model in scenarios characterized by incomplete scans,
such as instances where limbs, like the leg or arm, are ob-

t
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Figure 6. More results of 4D Shape Completion from highly par-
tial point clouds (half human) on the D-FAUST [2] dataset.

scured by structures, such as a grasped object in the hand.
This resilience stems from the inherent capabilities of the
diffusion model, empowering our model to infer potential
structures even in the presence of significant occlusions.
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Time step
IoU Chamfer Correspond.

OFlow LPDC CaDex Ours OFlow LPDC CaDex Ours OFlow LPDC CaDex Ours

0 83.1% 85.6% 89.1% 91.2% 0.059 0.052 0.044 0.031 0.057 0.047 0.043 0.031
1 83.1% 85.5% 89.2% 91.2% 0.059 0.053 0.044 0.031 0.062 0.053 0.047 0.034
2 82.8% 85.4% 89.3% 91.1% 0.061 0.053 0.043 0.031 0.069 0.059 0.054 0.036
3 82.5% 85.3% 89.4% 91.0% 0.061 0.053 0.043 0.032 0.077 0.064 0.061 0.039
4 82.2% 85.0% 89.4% 91.0% 0.062 0.054 0.043 0.032 0.083 0.070 0.068 0.040
5 82.0% 85.1% 89.5% 90.9% 0.063 0.054 0.043 0.032 0.088 0.074 0.074 0.043
6 81.8% 85.1% 89.5% 90.7% 0.064 0.054 0.043 0.033 0.092 0.078 0.080 0.045
7 81.6% 85.1% 89.5% 90.6% 0.064 0.054 0.043 0.032 0.095 0.082 0.085 0.047
8 81.4% 85.0% 89.5% 90.6% 0.065 0.055 0.043 0.033 0.098 0.085 0.090 0.048
9 81.3% 85.0% 89.5% 90.5% 0.066 0.055 0.043 0.034 0.101 0.088 0.094 0.051

10 81.1% 84.6% 89.5% 90.3% 0.066 0.055 0.043 0.034 0.103 0.090 0.097 0.052
11 81.0% 84.6% 89.5% 90.3% 0.067 0.055 0.043 0.034 0.106 0.092 0.100 0.054
12 80.8% 84.6% 89.5% 90.2% 0.068 0.056 0.043 0.034 0.108 0.094 0.103 0.055
13 80.6% 84.4% 89.4% 90.2% 0.069 0.056 0.043 0.034 0.111 0.095 0.105 0.056
14 80.3% 84.3% 89.3% 90.0% 0.070 0.056 0.044 0.035 0.114 0.096 0.107 0.057
15 80.0% 84.3% 89.2% 90.0% 0.071 0.056 0.044 0.035 0.119 0.097 0.109 0.059
16 79.5% 84.3% 89.1% 90.0% 0.073 0.056 0.044 0.035 0.125 0.098 0.110 0.059

Mean 81.5% 84.9% 89.4% 90.7% 0.065 0.055 0.043 0.033 0.095 0.080 0.084 0.047

Table 4. 4D Shape Reconstruction for Unseen Motions (DFAUST). We evaluate IoU, Chamfer distance, and correspondence distance
for 17 timeframes for the 4D shape reconstruction from sparse point clouds on seen individuals but unseen motions of DFAUST [2] dataset.

Time step
IoU Chamfer Correspond.

OFlow LPDC CaDex Ours OFlow LPDC CaDex Ours OFlow LPDC CaDex Ours

0 74.2% 76.8% 80.4% 84.6% 0.077 0.068 0.055 0.042 0.077 0.065 0.057 0.044
1 74.1% 76.8% 80.5% 84.6% 0.077 0.069 0.055 0.042 0.082 0.071 0.060 0.046
2 73.8% 76.7% 80.6% 84.5% 0.078 0.069 0.054 0.043 0.089 0.075 0.064 0.048
3 73.4% 76.5% 80.7% 84.4% 0.079 0.069 0.054 0.043 0.096 0.080 0.069 0.051
4 73.0% 76.5% 80.8% 84.4% 0.081 0.070 0.054 0.043 0.102 0.085 0.074 0.053
5 72.7% 76.6% 80.8% 84.2% 0.082 0.070 0.054 0.044 0.108 0.089 0.078 0.056
6 72.4% 76.3% 80.8% 84.0% 0.083 0.070 0.054 0.043 0.113 0.094 0.083 0.059
7 72.2% 76.2% 80.8% 83.8% 0.084 0.071 0.054 0.045 0.117 0.098 0.086 0.061
8 72.0% 76.0% 80.8% 83.6% 0.085 0.071 0.054 0.046 0.121 0.101 0.090 0.065
9 71.9% 76.1% 80.8% 83.6% 0.085 0.071 0.054 0.046 0.124 0.104 0.093 0.067

10 71.8% 76.1% 80.8% 83.5% 0.086 0.072 0.054 0.046 0.127 0.107 0.096 0.069
11 71.7% 75.9% 80.7% 83.3% 0.086 0.072 0.054 0.047 0.130 0.109 0.098 0.072
12 71.5% 75.9% 80.7% 83.1% 0.087 0.072 0.054 0.048 0.133 0.112 0.101 0.076
13 71.4% 75.8% 80.6% 83.1% 0.087 0.072 0.054 0.048 0.136 0.114 0.103 0.077
14 71.3% 75.7% 80.5% 83.0% 0.088 0.073 0.055 0.049 0.140 0.116 0.105 0.079
15 71.0% 75.6% 80.4% 82.8% 0.089 0.073 0.055 0.049 0.145 0.119 0.106 0.081
16 70.7% 75.7% 80.2% 82.8% 0.090 0.074 0.056 0.049 0.150 0.121 0.107 0.082

Mean 72.3% 76.2% 80.6% 83.7% 0.084 0.071 0.054 0.045 0.117 0.098 0.086 0.064

Table 5. 4D Shape Reconstruction for Unseen Individuals (DFAUST). We evaluate I0U, Chamfer distance, and correspondence distance
for 17 timeframes for the 4D shape reconstruction from sparse point cloud task on unseen individuals of DFAUST [2] dataset.
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Time step
IoU Chamfer Correspond.

OFlow LPDC CaDex Ours OFlow LPDC CaDex Ours OFlow LPDC CaDex Ours

0 74.8% 63.3% 79.6% 89.6% 0.191 0.302 0.063 0.046 0.163 0.252 0.078 0.045
1 74.4% 62.6% 79.8% 89.6% 0.193 0.308 0.062 0.047 0.182 0.285 0.082 0.048
2 73.7% 62.3% 80.0% 89.4% 0.197 0.310 0.061 0.047 0.208 0.311 0.091 0.051
3 73.1% 62.0% 80.2% 89.3% 0.202 0.313 0.060 0.048 0.233 0.341 0.100 0.053
4 72.7% 61.6% 80.3% 89.2% 0.206 0.316 0.060 0.048 0.254 0.372 0.110 0.056
5 72.3% 61.3% 80.2% 89.1% 0.209 0.320 0.059 0.049 0.271 0.402 0.118 0.058
6 72.1% 61.0% 80.5% 88.9% 0.211 0.323 0.059 0.050 0.285 0.431 0.126 0.060
7 71.9% 60.6% 80.6% 88.9% 0.213 0.327 0.059 0.050 0.298 0.459 0.133 0.062
8 71.7% 60.3% 80.6% 88.7% 0.215 0.331 0.058 0.050 0.308 0.485 0.139 0.063
9 71.5% 59.9% 80.7% 88.6% 0.216 0.335 0.058 0.051 0.318 0.510 0.145 0.065

10 71.3% 59.6% 80.7% 88.6% 0.218 0.339 0.059 0.051 0.327 0.533 0.150 0.066
11 71.1% 59.2% 80.6% 88.6% 0.219 0.343 0.059 0.052 0.335 0.555 0.154 0.067
12 70.9% 58.9% 80.5% 88.5% 0.221 0.347 0.059 0.052 0.343 0.576 0.158 0.068
13 70.7% 58.6% 80.4% 88.5% 0.223 0.351 0.060 0.052 0.352 0.598 0.162 0.069
14 70.3% 58.2% 80.2% 88.4% 0.226 0.355 0.060 0.052 0.364 0.619 0.166 0.070
15 69.7% 57.9% 80.0% 88.4% 0.231 0.360 0.061 0.053 0.380 0.641 0.169 0.071
16 68.9% 57.6% 79.6% 88.3% 0.239 0.365 0.063 0.053 0.402 0.662 0.173 0.072

Mean 71.8% 60.3% 80.3% 88.9% 0.214 0.332 0.060 0.050 0.295 0.472 0.133 0.061

Table 6. 4D Shape Reconstruction for Unseen Motions (DT4D-A) We evaluate IoU, Chamfer distance, and correspondence distance for
17 timeframes for the 4D shape reconstruction from sparse point cloud task on seen individuals but unseen motions of DT4D-A [4] dataset.

Time step
IoU Chamfer Correspond.

OFlow LPDC CaDex Ours OFlow LPDC CaDex Ours OFlow LPDC CaDex Ours

0 62.4% 53.5% 64.2% 84.8% 0.294 0.404 0.129 0.056 0.216 0.296 0.150 0.057
1 62.1% 52.8% 64.4% 84.7% 0.296 0.412 0.128 0.056 0.235 0.330 0.157 0.060
2 61.7% 52.6% 64.5% 84.6% 0.300 0.414 0.127 0.056 0.260 0.358 0.169 0.062
3 61.4% 52.4% 64.6% 84.4% 0.304 0.417 0.127 0.057 0.283 0.390 0.183 0.065
4 61.1% 52.2% 64.6% 84.3% 0.307 0.420 0.126 0.057 0.303 0.422 0.197 0.068
5 60.9% 51.9% 64.7% 84.1% 0.309 0.423 0.126 0.057 0.321 0.453 0.211 0.070
6 60.7% 51.7% 64.8% 83.9% 0.311 0.427 0.126 0.058 0.336 0.483 0.224 0.072
7 60.5% 51.4% 64.8% 83.8% 0.313 0.430 0.125 0.058 0.350 0.511 0.235 0.074
8 60.4% 51.2% 64.8% 83.6% 0.315 0.433 0.125 0.059 0.362 0.538 0.246 0.076
9 60.2% 51.0% 64.8% 83.4% 0.317 0.437 0.125 0.059 0.374 0.563 0.256 0.077

10 60.1% 50.7% 64.8% 83.3% 0.319 0.440 0.125 0.059 0.385 0.588 0.266 0.078
11 60.0% 50.5% 64.8% 83.3% 0.321 0.443 0.125 0.059 0.395 0.611 0.274 0.080
12 59.8% 50.3% 64.8% 83.2% 0.323 0.446 0.125 0.060 0.405 0.633 0.282 0.081
13 59.7% 50.1% 64.7% 83.1% 0.325 0.449 0.126 0.060 0.416 0.654 0.289 0.082
14 59.4% 49.9% 64.6% 83.0% 0.329 0.452 0.126 0.060 0.428 0.675 0.296 0.083
15 59.1% 49.7% 64.5% 82.9% 0.334 0.455 0.127 0.060 0.445 0.696 0.303 0.084
16 58.6% 49.5% 64.3% 82.8% 0.340 0.459 0.128 0.061 0.466 0.716 0.309 0.085

Mean 60.5% 51.3% 64.6% 83.7% 0.315 0.433 0.126 0.058 0.352 0.525 0.238 0.074

Table 7. 4D Shape Reconstruction for Unseen Individuals (DT4D-A) We evaluate IoU, Chamfer distance, and correspondence distance
for 17 timeframes for the 4D shape reconstruction from sparse point cloud task on unseen individuals of DT4D-A [4] dataset.
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Figure 7. 4D Shape Reconstruction from sparse and noisy point clouds on the D-FAUST[2] dataset. One for unseen motion (upper)
and another for unseen individuals (lower).
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Figure 8. 4D Shape Reconstruction from sparse and noisy point clouds on the DT4D-A [4] dataset. One for unseen motion (upper)
and another for unseen individuals (lower).
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Figure 9. 4D Shape Completion from partial point clouds on the D-FAUST[2] dataset. One for unseen motion (upper) and another for
unseen individuals (lower).
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Figure 10. 4D Shape Completion from partial point clouds on the DT4D-A [4] dataset. One for unseen motion (upper) and another for
unseen individuals (lower).
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