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In this document, we begin by reporting implementation
details of PaSCo and baselines in Sec. A, and present ad-
ditional ablations in Sec. B. Finally, we provide additional
experiments on uncertainty estimation and panoptic scene
completion in Sec. C, showcasing PaSCo performance.

We refer to the supplementary video, which is available
at https://astra-vision.github.io/PaSCo, for better qualitative
judgment of PaSCo performance.

A. Implementation details
PaSCo. Our network employs sparse convolution from
the MinkowskiEngine library [3]. The architecture of our
Dense 3D CNN is similar to the 3D Completion Sub-
network of SCPNet [11]. Additionally, the implementation
of the MLP and voxelization is based on Cylinder3D [14].

Training PaSCo required three days for the Semantic
KITTI dataset and five days for the SSCBench-KITTI360
dataset using 2 A100 GPUs (1 item per GPU).

Baselines. We employed the official implementations of
LMSCNet1, JS3CNet2, SCPNet3, and MaskPLS4 with
their provided parameters.

For SCPNet, despite many email exchanges with the au-
thors we were unable to reproduce their reported perfor-
mance using their official code as also mentioned by other
users 5. Hence, we put extra effort to reimplement their
method following authors’ recommendation, which resulted
in SCPNet*. Note that the latter is several points better than
the official implementation.

B. Additional ablations
Method ablation on SSCBench-KITTI360. We provide
additional ablations of our method on SSCBench-KITTI360

1https://github.com/cv-rits/LMSCNet
2https://github.com/yanx27/JS3C-Net
3https://github.com/SCPNet/Codes-for-SCPNet
4https://github.com/PRBonn/MaskPLS
5https://github.com/SCPNet/Codes- for- SCPNet/

issues/8

All PQ†↑ All PQ↑ mIoU↑ ins ece↓ ins nll↓ voxel ece↓ voxel nll↓

w/o augmentation 26.42 8.09 20.40 0.6114 4.7203 0.1296 2.0639
w/o rotation augmentation 26.48 7.90 21.20 0.6028 4.6321 0.1293 1.9261

w/o voxel-query sem. loss 24.96 7.59 20.90 0.6381 4.4526 0.1307 1.8124
w/o sem. pruning 22.38 6.50 19.59 0.6244 4.5468 0.1364 2.0997
PaSCo (Ours) 27.20 8.36 21.63 0.6022 4.4119 0.1285 1.8063

Table 6. Method ablation on SSCBench-KITTI360 (val. set.)
We ablate different components of our method during infer-
ence (top) and training (bottom), demonstrating that each plays
a significant role in achieving the best performance.

validation set in Tab. 6, which align with the results re-
ported in Tab. 5. The first two rows of Tab. 6 ablate the
augmentations used during inference (i.e. rotation + trans-
lation). The subsequent rows present the performance of
PaSCo, retrained w/o our proposed components.

Notably, substituting semantic pruning with binary oc-
cupancy pruning [2, 4] leads to a substantial decline in per-
formance, particularly in PSC metrics with -4.82/-1.86 in
All PQ†/All PQ. This result is expected as semantic prun-
ing not only balances supervision across classes, particu-
larly smaller ones, but also provides additional information
to the network. Removing our voxel-query semantic loss
(Eq. 3) also leads to a remarkable decrease in performance,
with a -2.24/-0.77 drop in All PQ†/All PQ, demonstrating
its effectiveness without incurring additional computational
costs. Lastly, the augmentations applied during inference
(top rows) contribute to increased variation among subnet-
works, thereby enhancing overall performance.

Semantic pruning. We further ablate the use of our
semantic pruning in Tab. 7, by the replacing it with
binary pruning as employed in [2, 4]. From the ta-
ble, semantic pruning significantly enhances performance
across most classes, notably for rare classes such as
truck (+33.72/+2.67 PQ on Semantic KITTI/SSCBench-
KITTI360), other-vehicle (+4.21/3.22 PQ on Semantic
KITTI/SSCBench-KITTI360), and pole (+1.48/+2.22 PQ
on Semantic KITTI/SSCBench-KITTI360). These im-

https://astra-vision.github.io/PaSCo
https://astra-vision.github.io/PaSCo
https://github.com/cv-rits/LMSCNet
https://github.com/yanx27/JS3C-Net
https://github.com/SCPNet/Codes-for-SCPNet
https://github.com/PRBonn/MaskPLS
https://github.com/SCPNet/Codes-for-SCPNet/issues/8
https://github.com/SCPNet/Codes-for-SCPNet/issues/8


Method ■
ca

r(
3.

92
%

)

■
bi

cy
cl

e
(0

.0
3%

)

■
m

ot
or

cy
cl

e
(0

.0
3%

)

■
tr

uc
k

(0
.1

6%
)

■
ot

he
r-

ve
h.

(0
.2

0%
)

■
pe

rs
on

(0
.0

7%
)

■
bi

cy
cl

is
t(

0.
07

%
)

■
m

ot
or

cy
cl

is
t.

(0
.0

5%
)

■
ro

ad
(1

5.
30

%
)

■
pa

rk
in

g
(1

.1
2%

)

■
si

de
w

al
k

(1
1.

13
%

)

■
ot

he
r-

gr
nd

(0
.5

6%
)

■
bu

ild
in

g
(1

4.
10

%
)

■
fe

nc
e

(3
.9

0%
)

■
ve

ge
ta

tio
n

(3
9.

30
%

)

■
tr

un
k

(0
.5

1%
)

■
te

rr
ai

n
(9

.1
7%

)

■
po

le
(0

.2
9%

)

■
tr

af
.-s

ig
n

(0
.0

8%
)

m
ea

n

PQ

w/o sem. pruning 22.13 9.82 17.97 11.17 7.11 2.91 0.00 0.00 75.00 11.38 24.20 0.00 3.53 0.61 8.21 4.55 31.05 8.21 2.61 15.04
PaSCo (Ours) 24.55 7.82 18.09 44.89 11.32 3.00 0.00 0.00 76.22 28.12 30.42 1.33 4.85 0.27 12.97 4.22 32.61 9.69 3.26 16.51

(a) Semantic KITTI (val. set)
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w/o sem. pruning 12.46 0.00 2.20 5.00 1.34 1.54 68.78 1.63 18.73 0.00 0.71 0.06 0.17 0.00 0.37 3.29 0.00 0.68 6.50
PaSCo (Ours) 16.93 0.00 3.00 7.67 4.56 0.91 69.17 2.22 22.29 0.06 7.08 0.06 3.19 0.00 2.59 4.85 0.00 5.84 8.36

(b) SSCBench-KITTI360 (val. set)

Table 7. Ablation of sem. pruning on (a) Semantic KITTI (val. set) and (b) SSCBench-KITTI360 (val. set) for Panoptic Scene
Completion class-wise performance. Semantic pruning improves the performance of the majority of classes on both datasets.

provements can be attributed to a more balanced supervi-
sion among classes and the inclusion of additional semantic
information.

C. Additional experiments

We provide further experiments for uncertainty estimation
in Sec. C.1 and panoptic scene completion in Sec. C.2.

C.1. Uncertainty estimation

Robustness to Out Of Distribution (OOD). We extend
our evaluation for Out Of Distribution, initially reported in
Sec. 4.2 and Fig. 6. In Fig. 8, we again evaluate baselines
MC Dropout [5], TTA [1], Deep Ensemble [8] along with
PaSCo(M=1) and PaSCo, on the Robo3D dataset [7] which
contains corrupted version of SemanticKITTI. All methods
are trained on the clean version of SemanticKITTI.

Different from the main paper, we report performance on
the ‘clean’ set (i.e., the original SemanticKITTI) to better
assess the effect of OOD. It’s also important to note that bet-
ter calibration may come at the cost of worse performance.

Hence, Fig. 8 presents not only uncertainty metrics (in-
stance ece, SSC ece – lower is better) but also two perfor-
mance metrics (All PQ† and mIoU – higher is better). The
latter demonstrates that our better calibration (Fig. 8, top)
comes along with better performance (Fig. 8, bottom) in
almost all corruptions. This further demonstrates the supe-
riority of PaSCo compared to both its one-subnet variation,
PaSCo(M=1), and all other baselines.

Figure 8. Impact of Out Of Distribution data on PSC and
uncertainty performance. We evaluate PaSCo and baselines,
trained on ‘clean’ Semantic KITTI on corrupted versions of the
same set from the Robo3D [7] dataset. Top part reports, uncer-
tainty ece metrics (lower is better), while bottom part reports per-
formance metrics (higher is better). The types of corruptions are
shown on the x-axis. Each bar represents the average metric for
each type of corruption, with the error bars showing the minimum
and maximum metric across intensities. PaSCo surpasses all base-
lines in terms of uncertainty measurement (i.e., lower ece) and
demonstrates comparable or better performance metrics (higher
All PQ† and mIoU).

Qualitative results. Fig. 10a and Fig. 10b present addi-
tional qualitative results of uncertainty estimation on Se-



mantic KITTI and SSCBench-KITTI360 validation sets.
We also illustrate the uncertainty of “stuff” class which we
omitted for brevity in the main paper.

Overall, PaSCo(M=1) exhibits higher level of confi-
dence across both voxel and instance uncertainties. In-
stances of small classes such as person, motorcycle, pole,
and traffic light show higher uncertainty levels compared to
larger objects like buildings, road and sidewalk. Further-
more, uncertainty tends to increase around the edges of in-
stances, in areas with occluded views, and in regions with
lower density of input points.

C.2. Panoptic Scene Completion (PSC)

Quality of pseudo panoptic labels. DBSCAN is a classi-
cal strategy to approximates panoptic labels when unavail-
able [6, 13]. In the absence of full panoptic ground truth
(GT), we validate the quality of our pseudo labels against
the single-scan point-wise panoptic GT of SemKITTI for
the val set, voxelizing both and evaluating where both are
defined, in Tab. 8. This confirms that DBSCAN provides a
good approximation of the true labels.

labels All PQ† All PQ All SQ All RQ Thing PQ Thing SQ Thing RQ Stuff PQ Stuff SQ Stuff RQ

HDBSCAN 80.07 80.05 90.41 83.07 63.24 89.03 70.29 91.26 91.32 91.59DBSCAN (ours) 88.17 88.15 92.70 90.12 83.50 94.76 87.91 note that stuff classes are not clustered

Table 8. Quality of Pseudo Labels on the SemKITTI (val set)

In Table I of MaskPLS [9], authors demonstrates that clus-
tering with HDBSCAN (a density-aware DBSCAN) leads
to reasonable panoptic segmentation on SemKITTI.

In Tab. 8, we find DBSCAN labels to be even more ac-
curate than HDBSCAN since we operate on fairly homoge-
nous density data (aggregation of multiple scans), while
MaskPLS clusters single scans exhibiting high-varying den-
sity.

From Fig. 9, large objects and small objects are reason-
ably clustered by DBSCAN.

Large objects Small objects

Figure 9. Examples of DBSCAN labels

Class-wise performance. Tab. 9 presents a class-wise
comparison of our method, PaSCo, against baselines on
(a) the Semantic KITTI (val. set) and (b) the SSCBench-
KITTI360 (test set). For the important PQ metric, PaSCo
outperforms all baselines in most classes on Semantic
KITTI, with the exception of the fence category. Note that

no method successfully predicted the bicyclist and motor-
cyclist classes. The SSCBench-KITTI360 dataset demon-
strates its greater complexity with generally lower per-
formance across all classes when compared to Semantic
KITTI. Nonetheless, PaSCo still demonstrates strong per-
formance, ranking first in 10 out of 18 classes and second
in 3 out of 18. The effectiveness of PaSCo is further il-
lustrated in its superior ability to detect masks and produce
high-quality masks, as reflected by its first or second highest
performance in most classes based on SQ and RQ metrics
on both datasets.

Qualitative results. Fig. 11 presents further qualita-
tive results on Semantic KITTI and SSCBench-KITTI360.
PaSCo predicts a more complete scene geometry, as illus-
trated in rows 1, 3, 5 and 6. It also infers better instance
quality, illustrated by the increased accuracy in instance
shape in rows 2, 4, 5 and 6, and by the clearer separation
observable in rows 2, 3, 4 and 5.
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LMSCNet [10] + MaskPLS [9] 9.43 0.00 0.76 2.32 0.00 0.47 0.00 0.00 53.53 1.82 5.63 0.00 0.26 0.19 0.00 0.27 3.52 1.00 0.00 4.17
JS3CNet [12] + MaskPLS [9] 9.57 1.07 4.19 17.54 0.91 0.12 0.00 0.00 58.45 5.32 15.89 0.00 1.02 1.33 0.00 0.76 13.63 0.28 0.00 6.85
SCPNet [11] + MaskPLS [9] 18.44 4.84 6.72 4.42 2.79 1.81 0.00 0.00 63.89 7.92 19.92 0.00 3.11 3.28 0.13 2.29 21.55 1.99 0.17 8.59
SCPNet* [11] + MaskPLS [9] 11.72 1.80 14.70 26.44 3.83 0.33 0.00 0.00 66.44 18.71 25.29 0.00 2.06 4.12 0.39 3.11 22.24 3.97 1.72 10.89
PaSCo (Ours) 24.55 7.82 18.09 44.89 11.32 3.00 0.00 0.00 76.22 28.12 30.42 1.33 4.85 0.27 12.97 4.22 32.61 9.69 3.26 16.51

SQ

LMSCNet [10] + MaskPLS [9] 62.65 0.00 53.44 53.87 0.00 69.00 0.00 0.00 63.30 57.83 52.70 0.00 53.93 52.58 0.00 59.76 54.12 53.37 0.00 36.13
JS3CNet [12] + MaskPLS [9] 59.88 53.79 55.17 57.73 55.70 62.50 0.00 0.00 65.98 55.70 54.53 0.00 52.62 53.41 0.00 55.01 56.38 57.68 0.00 41.90
SCPNet [11] + MaskPLS [9] 66.69 57.78 65.30 55.30 65.15 61.01 0.00 0.00 68.56 58.72 55.81 0.00 54.94 54.45 51.04 55.58 59.86 52.97 57.14 49.49
SCPNet* [11] + MaskPLS [9] 63.98 54.46 60.54 54.03 58.55 52.31 0.00 0.00 70.61 59.25 56.69 0.00 53.61 55.70 52.84 56.05 58.76 53.55 56.62 48.29
PaSCo (Ours) 70.10 57.84 67.00 67.33 62.15 60.14 0.00 0.00 77.52 62.62 59.95 54.71 55.87 51.29 52.85 57.50 63.88 54.78 55.17 54.25

R
Q

LMSCNet [10] + MaskPLS [9] 15.05 0.00 1.42 4.30 0.00 0.67 0.00 0.00 84.56 3.15 10.69 0.00 0.48 0.37 0.00 0.45 6.50 1.87 0.00 6.82
JS3CNet [12] + MaskPLS [9] 15.98 2.00 7.59 30.38 1.63 0.20 0.00 0.00 88.59 9.55 29.14 0.00 1.93 2.49 0.00 1.39 24.17 0.48 0.00 11.34
SCPNet [11] + MaskPLS [9] 27.65 8.38 10.29 8.00 4.28 2.96 0.00 0.00 93.18 13.50 35.69 0.00 5.66 6.03 0.25 4.12 36.00 3.76 0.30 13.69
SCPNet* [11] + MaskPLS [9] 18.32 3.31 24.29 48.94 6.54 0.63 0.00 0.00 94.09 31.58 44.61 0.00 3.84 7.39 0.73 5.56 37.84 7.42 3.04 17.80
PaSCo (Ours) 35.03 13.51 27.00 66.67 18.21 4.98 0.00 0.00 98.32 44.91 50.73 2.44 8.69 0.52 24.54 7.33 51.05 17.70 5.91 25.13

(a) Semantic KITTI (val. set)
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LMSCNet [10] + MaskPLS [9] 4.64 0.00 0.00 0.00 0.00 0.67 49.87 0.31 5.75 0.00 0.00 0.00 0.00 1.59 0.13 4.24 0.00 0.00 4.14
JS3CNet [12] + MaskPLS [9] 13.77 0.00 0.81 3.58 0.48 1.50 63.13 1.63 23.99 0.12 0.14 0.19 0.00 4.36 1.51 6.55 0.09 0.44 6.79
SCPNet [11] + MaskPLS [9] 17.77 0.00 2.56 1.45 1.69 1.91 46.77 0.54 22.06 0.04 0.14 0.37 0.00 5.28 2.02 7.48 0.14 0.29 6.14
SCPNet* [11] + MaskPLS [9] 15.87 0.00 1.53 3.80 0.97 1.72 57.55 3.34 30.65 0.16 0.04 0.68 0.00 5.66 2.46 9.62 0.08 0.26 7.47
PaSCo (Ours) 14.85 0.11 1.73 9.01 1.97 1.60 72.05 1.47 35.82 0.00 24.29 0.53 8.96 5.07 3.15 14.47 0.11 1.38 10.92

SQ

LMSCNet [10] + MaskPLS [9] 54.47 0.00 0.00 0.00 0.00 67.99 66.89 58.36 53.46 0.00 0.00 0.00 0.00 54.17 56.27 65.93 0.00 0.00 26.52
JS3CNet [12] + MaskPLS [9] 58.34 0.00 59.77 52.01 52.67 67.64 69.77 56.09 57.48 53.95 52.22 53.28 0.00 54.62 54.94 64.73 55.20 58.21 51.16
SCPNet [11] + MaskPLS [9] 60.89 0.00 61.42 52.88 57.20 58.39 63.06 55.22 56.97 55.56 52.45 55.16 0.00 54.96 54.54 65.31 61.72 55.60 51.18
SCPNet* [11] + MaskPLS [9] 59.32 0.00 54.73 55.96 53.73 65.01 69.17 59.13 58.09 52.13 50.13 55.66 0.00 55.33 55.10 63.70 52.62 52.18 50.67
PaSCo (Ours) 58.22 53.03 57.14 55.89 55.53 65.39 76.15 58.04 58.51 0.00 56.18 61.65 55.28 57.99 56.83 67.85 54.74 61.42 56.10

R
Q

LMSCNet [10] + MaskPLS [9] 8.51 0.00 0.00 0.00 0.00 0.99 74.56 0.53 10.75 0.00 0.00 0.00 0.00 2.94 0.24 6.43 0.00 0.00 6.45
JS3CNet [12] + MaskPLS [9] 23.61 0.00 1.36 6.88 0.91 2.22 90.49 2.91 41.72 0.22 0.28 0.36 0.00 7.98 2.75 10.11 0.15 0.76 10.71
SCPNet [11] + MaskPLS [9] 29.18 0.00 4.17 2.75 2.95 3.27 74.16 0.98 38.72 0.08 0.28 0.67 0.00 9.60 3.71 11.45 0.23 0.53 10.15
SCPNet* [11] + MaskPLS [9] 26.76 0.00 2.79 6.79 1.81 2.65 83.20 5.65 52.77 0.30 0.09 1.23 0.00 10.24 4.47 15.10 0.16 0.50 11.92
PaSCo (Ours) 25.51 0.21 3.03 16.13 3.55 2.45 94.62 2.53 61.22 0.00 43.24 0.86 16.21 8.75 5.54 21.33 0.19 2.24 17.09

(b) SSCBench-KITTI360 (test set)

Table 9. Class-wise performance on (a) Semantic KITTI (val. set) and (b) SSCBench-KITTI360 (test set) for Panoptic Scene
Completion. We report the performance of our method and baselines for each class across the two datasets. Our approach exceeds the
performance of baseline methods in most classes, particularly in the crucial PQ metric. The SSCBench-KITTI360 dataset exhibits a higher
level of complexity compared to Semantic KITTI, as evidenced by its overall lower performance metrics. PaSCo also shows superior
performance in SQ and RQ by being either first or second in most classes.
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(b) Qualitative uncertainty comparison on SSCBench-KITTI360 (val. set.

Figure 10. Additional qualitative uncertainty comparison on Semantic KITTI and SSCBench-KITTI360. PaSCo offers more
insightful estimates of uncertainty, particularly in smaller instances with incomplete geometry, along the boundaries of segments, in areas
with sparse input points, and in extrapolated regions.



Input LMSCNet + MaskPLS JS3CNet + MaskPLS SCPNet* + MaskPLS PaSCo (ours) ground truth
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Figure 11. Additional qualitative results on Panoptic Scene Completion. PaSCo demonstrates improved instance quality, evident from
superior geometry (rows 1, 3 to 6), and better separation (rows 2 to 4). Additionally, it predicts more accurate scene structure, with less
missing geometry (rows 1, 3, 5, and 6).
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