
Smart Help: Strategic Opponent Modeling for
Proactive and Adaptive Robot Assistance in Households

Supplementary Material

Task Goals (example)

MakeBreakfast (Get, Potato), (KeepOff, Mircowave),
(KeepOpen, Mircowave), (In, Potato, Microwave),
(KeepClose, Microwave), (KeepOn, Microwave),

(KeepOff, Microwave)
ArrangeRoom (Get, Potato), (KeepOpen, Fridge),

(In, Potato, Fridge), (KeepClose Fridge),
MakeCoffee (Get, Mug), (In, Mug, CoffeeMachine),

(KeepOn, CoffeeMachine), (KeepOff, CoffeeMachine)

Table 1. The table showcases examples of the parsing process,
from overarching tasks to specific goals. This process may vary
across different scenes and may also be probabilistic within the
same scene. For instance, in certain scenarios, the mug may al-
ready be situated in the coffee machine. In such cases, the agent
only needs to activate and then deactivate the machine to complete
the “MakeCoffee” task.

Overview
This supplementary material includes:
• Appendix A has the detailed setting of the environment.
• Appendix B has the model implementation details.

A. Environment Setting
Scenes We use 30 scenes from AI2THOR kitchen scenes,
which are shown in Fig. 1. In these scenes, 20 are used
for training while the remaining 10 are reserved for testing.
The object composition in each scene is diverse. We only
pay attention to objects that were common across all scenes
when parsing the task to goals.

Tasks We have classified our tasks into three categories:
MakeBreakfast, ArrangeRoom, and MakeCoffee. Each task
is further divided into a series of goals. The Tab. 1 shows
some examples about the parsing process. Different room
will leads to different parsing. For example, in some rooms
the mug has been already put in the coffee machine, thus
the main agent does not need to pick up the mug and put it
in the coffee machine.

Goals Goals denote the target states that an agent must
reach before successfully completing a task. We have iden-
tified seven potential goals for the agent to choose from.
These are: (Wait), (Get, ei), (On, ei, pri), (In, ei, pri),
(KeepOpen, ei), (KeepClose, ei), (KeepOn, ei), and (Keep-
Off, ei). In certain scenarios, the sequence of goals is pre-
determined. This means that the agent must accomplish the

goals in the given order, rather than arbitrarily. For instance,
the microwave must be closed before it can be toggled on.
Failing to follow this sequence results in an invalid action,
as a microwave cannot be activated while open. Moreover,
once a specific state has been reached, certain properties
of that state need to be maintained until the next goal indi-
cates a change. For example, if the goal sequence comprises
(Open, Fridge) followed by (Put, Bread, Fridge), the agent
must keep the fridge open after the first goal is achieved,
until successfully accomplishing the ensuing goal of plac-
ing the bread in the fridge. These complexities present chal-
lenges both in the parsing process, which converts tasks into
goals, and in the execution of these goals, adding layers of
difficulty to the agent’s tasks.

Intentional action We have defined seven intentional ac-
tions that the agent can perform: (Wait), (PickUp, ei),
(Put, pri), (ToggleOn, ei), (ToggleOff, ei), (Open, ei), and
(Close, ei). Upon selecting an intentional action, a low-
level planner devises a sequence of executable actions to be
sent to the AI2THOR simulator. It’s important to note that
actions may fail due to various reasons. For instance, the
action (Put, pri) will result in failure if the agent is not cur-
rently holding any objects. Similarly, an action to open an
item that cannot be opened is destined to fail. Furthermore,
the validity of an action can be context-specific. For exam-
ple, while a microwave can typically be opened, it cannot be
opened if it is currently active; it must first be toggled off.
This context-dependent validity of actions presents a sig-
nificant challenge for the model. It necessitates the model
to learn the intricate dependency relationships between the
context and the action, based on the reward and observation
data provided by the environment.

Capability Some examples about how the capability will
affect agent’s interaction with different objects are shown in
Fig. 2. We represent the capability by α, β, γ, δ, ϵ, and ζ.
• αi ∈ [0, 1] denotes the maximum height that the agent

can reach;
• βi ∈ [0, 1] represents the maximum weight that the agent

can lift;
• γi, δi, ϵi, ζi ∈ [0, 1] represent the agent’s ability to com-

plete open, close, toggle on, and toggle off tasks, respec-
tively.
In this challenge, we have seven types of agents to select

from. These include agents with full capabilities and agents
with one randomly assigned limitation. An agent with full

Figure 1. In our study, a total of 30 distinct scenes from AI2-THOR were utilized to train our model. The planforms of them are provided
here. These scenes were divided into two datasets: 20 for training while the remaining 10 were reserved for testing. Different scenes have
different size, but the figures presented here are scaled to the same size. The object composition in each scene is diverse. Thus the agent
must learn a general policy for different scenes. However, for our tasks, the focus was solely on those objects that were common across all
scenes. This approach was adopted to ensure that the task was consistently applicable across all the scenes used in the study.

capabilities will have (α, β, γ, δ, ϵ, ζ) = (1, 1, 1, 1, 1, 1). If
the agent has a limitation in α, the value will fall within
the range of (0.2, 0.8). The same concept applies to other
capabilities, where β will be within (0.1, 0.7), and γ, δ, ϵ, ζ
will range from (0, 0.49).

In the training process, the main agent will be randomly
set to a kind of capability. In the testing process, we will set
the main agent capability to the lowest level. For example,
when the main agent’s type is β limitation, his capability is
(1, 0.1, 1, 1, 1, 1).

B. Implementation Details
B.1. Trajectory dataset

We assembled a main agent trajectory dataset for pretrain-
ing the opponent modeling module. The pretraining phase
equips the model with a more effective starting point for
the subsequent reinforcement learning (RL) training. Dur-
ing data collection, we employ a human-derived expert pol-
icy to guide the main agent’s actions. Simultaneously, the
helper will randomly choose an action, with its observations

Type Capability

Full capability (1, 1, 1, 1, 1, 1)
α limitation (α, 1, 1, 1, 1, 1), α ∈ (0.2, 0.8)
β limitation (1, β, 1, 1, 1, 1), β ∈ (0.1, 0.7)
γ limitation (1, 1, γ, 1, 1, 1), γ ∈ (0, 0.49)
δ limitation (1, 1, 1, δ, 1, 1), δ ∈ (0, 0.49)
ϵ limitation (1, 1, 1, 1, ϵ, 1), ϵ ∈ (0, 0.49)
ζ limitation (1, 1, 1, 1, 1, ζ), ζ ∈ (0, 0.49)

Table 2. We sample agents from seven different types. The types
also include the sampling of agents with full capabilities, serv-
ing as a benchmark to examine the model’s ability to differentiate
between agents with limitations and those without. The range of
capabilities for an agent with limitations is established based on
the statistical information derived from the scenes.

and the ground label constituting the dataset. This dataset
comprises 60,024 trajectories, each containing observations
at five discrete time points and the final goal of the main

Figure 2. This figure shows the impact of different capabilities, represented by α, β, γ, δ, ϵ, and ζ, on the agent’s interaction with various
objects. α denotes the agent’s ability to lift objects of different weights. A lower α value implies a limited capacity to handle only lighter
objects, such as a potato (weight 0.18) or a tomato (weight 0.20). However, as α increases, the agent can manage heavier items, such
as bread (weight 0.7) or a cup (weight 1.0). These object weights are determined by the AI2THOR simulator [1], reflecting the careful
considerations of its developers. β symbolizes the agent’s ability to reach varying heights. The floor, with a height of 0, is the most
accessible, while the other objects’ height, like the cabinet’s height, determined by its presence in the scene, poses a greater challenge.
γ, δ, ϵ and ζ respectively represent the agent’s ability to perform specific operations: opening, closing, toggling on, and toggling off. We
assume a threshold of 0.5, which serves as the tipping point between success and failure in these actions under normal circumstances.

Goal KeepClose Get In On Open ToggleOff ToggleOn Wait None

Trajectory 4192 8295 3420 214 5066 2384 2337 12953 21154

Table 3. Dataset Statistics. Our dataset is characterized by an im-
balance in the number of trajectories corresponding to each goal.
This discrepancy is addressed during the training process through
a rebalancing strategy. The frequency of “On” goals is signifi-
cantly lower compared to the others. This is primarily due to the
interchangeable use of “In” goals to represent “On” goals. This
substitution is reasonable as the agent can achieve them via the
same singular “Put” action. This substitution is used particularly
during the parsing of the task “ArrangeRoom”, which aids in main-
taining uniform terminology across the parsing.

agent. When at all of the five discrete time points the helper
can not observe the main agent, the label of the main agent’s
goal will be set to None. The statistics of the dataset is
shown in Tab. 3.

B.2. Opponent Modeling Module

We train an opponent modeling module utilizing the main
agent trajectory dataset.

Property Data type Method Output size
Object type Int Embedding 32

Parent receptacle Int Embedding 32
Height Float MLP 32
Weight Float MLP 32
Position Float MLP 32
Distance Float MLP 32

Other properties Bool MLP 32

Table 4. The properties of object and how to change them to em-
bedding. Here other properties include ’isPickedUp’, ’isOpen’,
’isCooked’, ’isToggled’, and ’isVisible’.

First, we need to change the observations to embedding
with the object encoder. We use MLPs and embedding
model to achieve this.

After the change, we will get a feature will size 224 for
every object. Then we use a transformer to handle all the
features. The transformer has 8 heads, 0.2 dropout, hidden
size of 128, and 4 layers. With the transformer, we get the
object feature.

Property Data type Method Output size
Held object type Int Embedding 32

Action type Int Embedding 32
Action success Bool MLP 32

Position Float MLP 32
Rotation Float MLP 32

Table 5. The observations of objects and how to change them to
embedding.

For dealing with the observation of agents, we use the
agent encoder 5. After the model processing, we concate-
nate the feature of action type and action success and put
them into a MLP to get the action feature. Then we use
other three features and the action feature to get the agent
feature with MLP.

The object feature and the agent feature are concatenate
to form the state feature. Next, we concatenate state fea-
tures of five time points and put them into a MLP. The time
feature output by the MLP has size of 128. Then, the time
feature is fed into two transformers, and then we will get
two features, which represent goal and capability respec-
tively. The transformer has two heads, 0.1 dropout, hidden
size of 256, and 4 layers. The parameters of these two trans-
formers are not shared. Then we concatenate the time fea-
ture and the goal feature and put them to a MLP. The we get
the feature of o1, whose size is 128. Then we concatenate
the time feature, the goal feature and the o1 feature and get
o1 feature with a MLP. The o1 feature represents the object
that the goal involves. The o2 feature represents the parent
receptacle that the goal involves.

In the training process, we use four MLP as classifiers
to get the probability of goals, the relevant objects, and the
predicted capabiities. The we use cross-entropy loss and
the Adam optimizer, with a learning rate of 1× 10−6 and a
batch size of 32.

We achieved a commendable prediction accuracy of
83.6%. This high level of precision indicates that our model
possesses a remarkable capability to infer the goals of hu-
man agents based on a constrained set of observational data.

B.3. Helping Model

Our model accepts symbolic observations as input, which
encompass the helper’s partial observation, as well as the
symbolic agent states of both the helper and the main agent.
The observation includes the symbolic states of all objects
within the helper’s field of view. The object encoder and the
agent encoder have been introduced in the last part. With
the assistance of our pre-trained opponent modeling mod-
ule, we can effectively model the main agent using its trajec-
tory. It is worth noting that the classifiers from the opponent
modeling module are not utilized within the helper model.
Instead, the latent representation from the opponent model-

ing module is concatenated with the observation. This com-
posite embedding is then processed through a linear layer
and a ReLU function before being input into a single-layer
LSTM with 512 hidden units. To generate an action policy,
we apply a linear layer to the output of the LSTM, with no
additional nonlinearity required. This streamlined approach
ensures the effective processing of symbolic observations
and accurate policy generation.

B.4. LLM

In our setup, LLM, i.e., “gpt-3.5-turbo-instruct” is used as
a planner to generate a policy for the helper agent. For each
scene, we provide the basic information of this environ-
ment, as shown in Fig. 3. At each step, we give the partial
observations of scenes and agents to the LLM, as shown in
Fig. 4. Besides, as shown in Fig. 5, we stipulate how the
LLM should output to select a valid action, and give an ex-
ample to help it understand. The LLM processes the prompt
and produces an action decision based on its understanding
of the given information. If the LLM outputs an invalid ac-
tion decision, the “Wait” action will be adopted as its next
action. To assess the effectiveness of the LLM-generated
actions, we execute this action in the AI2-THOR simulator
to determine how well the LLM performs as a planner for
the helper agent in the given environment.

B.5. MCTS-heuristic

• MCTS. We implement a MCTS algorithm which out-
puts an action based on a given goal, whether predicted,
ground truth, or randomly selected. In each simulation, it
samples an action under the guidance of the Upper Confi-
dence Bound (UCB), which balances exploration and ex-
ploitation according to node values and visit counts. Then
it performs a rollout to reach one possible end state, with
the maximum rollout depth limited to 5 steps. If the goal
is successfully achieved within this depth, the end state’s
value is evaluated by:

v = 50/d

where v represents the value and d the number of steps
taken to complete the goal. The algorithm returns the ac-
tion represented by the most visited node after n = 500
simulations.

• MCTS-heuristic.To enhance search efficiency and task
completion capabilities, we use a heuristic MCTS
method, which incorporates hand-written rules that are
specifically defined to break down a goal into a sequence
of actions necessary for task completion. This model
employs a probabilistic strategy during the sampling of
the MCTS, with a probability parameter psample determin-
ing whether to sample a random action for rollout or, at
1 − psample, select the next action from the rule-based se-
quence, excluding completed actions. When psample is set

There are two agents in the environment: you and your partner. Your goal is to help your partner. To do this, you need to
observe the current environment to infer the task and goal of your partner. There are three possible tasks: MakeBreakfast,
MakeCoffee, and ArrangeRoom. There are seven possible goals: Wait, PickUp something, Put something on somewhere,
ToggleOn something, ToggleOff something, Open something, Close something. To complete the task, your partner will
separate the task into several goals and complete them successively. However, your partner's capability may be lacking. He
will fail in some actions. There are six kinds of capabilities: mass, height, open, close, toggle_on, toggle_off, and your partner
will fail in none or several kinds of capabilities. Mass and height determine the maximum weight and height that the helper
can pick up, and the last four capabilities will affect the success of the corresponding action. Then you will receive the objects’
information which are in your sight, and the state of your partner.

Figure 3. The LLM prompt (the first part). We provide the basic setting information for the LLM, including what needs to be completed,
what can be done, what types of the main agents are in the environment, etc.

The objects and their properties are as follows:
<0, Bread, has no parent receptacle, it can be picked up, it cannot be opened, it cannot be cooked, it cnnnot be toggled on or
off, its height is 0.73 and its weight is 0.70, its position is x:-0.25, y:0.73, z:0.88, its distance from main agent is 0.41.>
……
<5, Window, has no parent receptacle, it cannot be picked up, it cannot be opened, it cannot be cooked, it cnnnot be toggled on
or off, its height is 1.45 and its weight is 0.00, its position is x:0.32, y:1.45, z:3.09, its distance from main agent is 2.71. >

All the actions are as follows: 0, Wait. 1, PickUp. 2, Put. 3, ToggleOn. 4, ToggleOff. 5, Open. 6, Close.

Your partner has taken PickUp at the last step. But his last action failed. His previous actions are: [['PickUp’, False], ……,
['PickUp’, False]]. For a single action, it is [action, success]. His position is x:-0.25, y:0.9009991884231567, z:0.5. His
rotation is x:-0.0, y:0.0, z:0.0. Now he is holding None. His position is x:-0.25, y:0.9009991884231567, z:0.5. His rotation is
x:-0.0, y:0.0, z:0.0. Now he is holding Bread. You have taken PickUp at the last step. But your last action has failed.

Figure 4. The LLM prompt (the second part). At each step, we provide the LLM with its partial observations. For scene observations,
we enumerate all observable objects and their properties. For agent observations, we summarize the action trajectory of the main agent, the
completion of his previous action, and whether this main agent holds an object. All the optional actions and the previous action information
of the LLM will also be mentioned.

to 1, this model is equivalent to the MCTS model, and
when it is set to 0, it strictly follows the rule-based ac-
tion sequence. Initially, we set psample to 1 and 0.9 to en-
courage exploration for more efficient action sequences.
The action sequences obtained through this exploratory
search align with the hand-written rules, validating their
optimality to a certain degree. During testing, we ad-
just psample = 0.5 to ensure a more efficient search and
a higher success rate in task completion.

• MCTSTG and MCTSRG. We develop MCTSTG and
MCTSRG to replicate the baselines used in Watch-and-
Help [2]. In the original work, a hierarchical planner was
implemented, using MCTS for high-level planning and
regression planning (RP) for low-level planning. Since
our task environment does not require low-level planning,
we use the MCTS-heuristic model as a counterpart of their
planner in this specific environment. To provide compari-
son, we implemented two additional baselines: MCTSTG,
which has knowledge of the main agent’s true goal, and
MCTSRG, which follows a random goal. As shown in the
results table, the performance of MCTSRG is similar to the
Random agent, with minimal ability to provide assistance

and complete tasks. This highlights the importance of a
smart agent that can infer the main agent’s goal. MCTSTG,
knowing the true goal of the main agent, achieves the best
performance across all metrics. However, while it sig-
nificantly surpasses other models in other metrics, com-
pleting the task better and faster, its HN is relatively low,
indicating the limitation of its simple take-over helping
strategy.

To help your partner, you need to infer which task and goal he is doing based on your observation of objects and agents, and
infer his capability at the same time. Based on your inferred goal and capability, you can choose whether and how to help your
partner. Only when you find your partner can not finish the task on his own, the help is appropriate. You must output your
decision following the format of "action-object", e.g., "Put-Fridge" or "ToggleOn-Faucet". If you have not decided on an
action, you can output "Wait-None". You can only output a single "action-object" pair at once. You must choose a concrete
action and object for outputting. For example, ('action', 'object') is invalid, please output the action like ('PickUp', 'Cup')
instead. Let's think step by step and output your action.

Figure 5. The LLM prompt (the third part). We will specify the criteria for selecting a valid action through the LLM’s output, along
with providing illustrative examples to facilitate its comprehension.

References
[1] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,

Luca Weihs, Alvaro Herrasti, Matt Deitke, Kiana Ehsani,
Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An interactive 3d
environment for visual ai. arXiv preprint arXiv:1712.05474,
2017. 3

[2] Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang, Yuan-
Hong Liao, Joshua B Tenenbaum, Sanja Fidler, and An-
tonio Torralba. Watch-and-help: A challenge for social
perception and human-ai collaboration. arXiv preprint
arXiv:2010.09890, 2020. 5

	. Environment Setting
	. Implementation Details
	. Trajectory dataset
	. Opponent Modeling Module
	. Helping Model
	. LLM
	. MCTS-heuristic

