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Supplementary Material

In this supplementary document we first provide imple-
mentation details of our method. Next, we provide more
ablative experiments to demonstrate the advantages of our
method. Afterwards, we explain the preparation process of
the medical data for our statistical shape analysis. Eventu-
ally, we show more qualitative results of our method.

10. Implementation details
Firstly, we provide definitions of our spectral regularisation
Lstruct in Eq. (2). The Lbij is the bijectivity loss to encour-
age the functional map from X through Y back to X is an
identity map, and vice versa. It can be expressed in the form

Lbij = ∥CXYCYX − I∥2F + ∥CYXCXY − I∥2F . (20)

The Lorth is the orthogonality loss to prompt a locally area-
preserving matching, see [73] for more details. It can be
expressed in the form

Lorth =
∥∥C⊤

XYCYX − I
∥∥2
F
+
∥∥C⊤

XYCYX − I
∥∥2
F
. (21)

In the following we explain each component in our frame-
work in detail. Following prior works [13, 49], we use
DiffusionNet [76] as our feature extractor and wave ker-
nel signature (WKS) [4] with 128 dimensions as input fea-
tures, since it is agnostic to shape discretisation and orien-
tation. The dimension of the output features is 256 for non-
isometric datasets and 384 for near-isometric datasets. In
the context of functional map computation, we use the reg-
ularised functional map solver [67] based on the resolvent
mask M, in which the regularisation term Ereg in Eq. (1)
can be expressed in the form

Ereg =
∑
ij

C2
ijMij , (22)

where
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. (23)

The regularisation strength λ in Eq. (1) is 100. The num-
ber of eigenfunctions Φ and eigenvalues Λ used for func-
tional map computation is 200 for non-isometric datasets
and 300 for near-isometric datasets. In terms of our spec-
tral loss Lspectral, we empirically set λbij = 1, λorth = 1
in Eq. (2), λstruct = 1, λcouple = 1 in Eq. (8). For our

spatial loss Lspatial, we empirically set λalign = 5, λarap =
100, λsym = 1, λvar = 1 in Eq. (15). We use Adam [45]
optimiser with learning rate equal to 10−3. In the con-
text of test-time adaptation, the shape-dominant deforma-
tion field ∆s(t) is initialised as all zeros. The Dirichlet
energy in Eq. (16) can be expressed in the form

LD = ∥∆∥2L , (24)

where ∥X∥L = Trace(XTLX). We empirically set λD =
0.1. The number of iterations for optimisation is 2× 103.

11. Additional evaluations
11.1. Smoothness of point-wise maps

In Sec. 5.1 we demonstrate that our method substantially
outperforms existing state-of-the-art shape matching meth-
ods in terms of matching accuracy based on mean geodesic
error. In this experiment, we evaluate the matching smooth-
ness based on the conformal distortion metric [41] that is
also used in [24, 27]. We compare our method with the
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Figure 11. Matching smoothness on all datasets in our match-
ing experiments. Our method obtains smoother point-wise corre-
spondences based on the combination of spectral and spatial maps.



state-of-the-art matching method (i.e. URSSM [13]) based
on deep functional map framework. Fig. 11 summarises the
results on all datasets in our matching experiments. Our
method obtains smoother point-wise correspondences by
harmonising spectral and spatial maps.

11.2. Matching on topologically noisy data

We evaluate the performance of our method on topologi-
cally noisy data. Such topological noise presents a great
challenge to shape matching methods, especially for match-
ing methods with spatial regularisation [30]. To this end,
we use the TOPKIDS dataset [46], which contains syn-
thetic shapes of children with topological merging. Due
to the small amount of training data, we only consider ax-
iomatic and unsupervised methods for comparison, similar
to [13, 30]. Tab. 6 summarises the matching results. We ob-
serve that our method obtains comparable but slightly worse
performance compared to state-of-the-art, due to the incor-
poration of explicit spatial regularisation. Meanwhile, our
method outperforms existing shape matching methods with
explicit spatial regularisation. Moreover, our spatial regu-
larisation ensures that our method does not suffer from sym-
metry flip as shown in Fig. 12.

Geo. error (×100) TOPKIDS Spatial reg.

Axiomatic Methods
ZoomOut [61] 33.7 ✗

Smooth Shells [27] 11.8 ✓

DiscreteOp [68] 35.5 ✗

Unsupervised Methods
WSupFMNet [75] 47.9 ✗

Deep Shells [28] 13.7 ✓

NeuroMorph [29] 13.8 ✓

AttnFMaps [49] 23.4 ✗

URSSM [13] 9.2 ✗

Ours 9.4 ✓

Table 6. Matching on TOPKIDS dataset. Our method achieves
comparable but slightly worse performance compared to the state-
of-the-art method, while outperforming existing shape matching
methods with explicit spatial regularisation.

Source AttnFMaps URSSM Ours

Figure 12. Qualitative comparison on TOPKIDS dataset. By
incorporating spatial regularisation, our method does not suffer
from front-back flips that occurs for functional map methods.

12. Preparation of lung shapes
To generate the lung meshes used in our statistical shape
analysis experiment (see Sec. 5.3), we randomly select 22
CT images from the 9th subset of the LUNA dataset [74].
Each CT image is accompanied by segmentation masks of
the lung structures. We first use the Marching Cubes al-
gorithm [57] to extract triangular meshes for the left lungs.
After extraction, we remove outliers by clustering triangle
meshes and retaining only the biggest triangle mesh in terms
of the number of triangles. Next, we employ a Laplacian
smoothing algorithm to smooth the triangle mesh. Finally,
we apply the Quadric Error Metric Decimation [34], result-
ing in simplified mesh structures comprising approximately
8000 triangles per mesh.

13. More qualitative results
In this section we provide more qualitative results obtained
by our method for shape matching and interpolation.

13.1. Shape matching

Figure 13. Qualitative shape matching results of our method
on the SHREC’19 dataset. The top-left shape is the source shape
that is matched to the other shapes. Our method obtains accurate
matchings for human shapes with diverse poses and appearances.

Figure 14. Qualitative shape matching results of our method
on the SMAL dataset. The top-left shape is the source shape
that is matched to the other shapes. Our method obtains accurate
correspondences for shapes in different classes.



Figure 15. Qualitative shape matching results of our method on
the DT4D-H inter-class dataset. The top-left shape is the source
shape that is matched to the other shapes. Our method obtains
accurate correspondences for non-isometric deformed shapes.

13.2. Shape interpolation

In this subsection we demonstrate the shape interpolation
results of our method on different datasets. Additionally,
we show the matching results by texture transfer from the
source shape to the target shape. We observe that our
method can obtain accurate point-wise correspondences and
realistic shape interpolation trajectories even under large
non-isometry and pose variations.

Figure 16. Qualitative shape interpolation results of our
method on the FAUST dataset. Our method obtains realistic in-
terpolation trajectories that capture both pose-dominant (horizon-
tal) and shape-dominant (vertical) deformations.

Figure 17. Qualitative shape interpolation results of our
method on the SMAL dataset. Our method obtains realistic in-
terpolation trajectories between different shape categories.

Figure 18. Qualitative shape interpolation results of our
method on the MANO dataset. Our method obtains realistic in-
terpolation trajectories between hands in different poses.

Figure 19. Qualitative shape interpolation results of our
method on the LUNA dataset. Our method obtains realistic inter-
polation trajectories between lungs despite large non-isometries.
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