
Appendices

This supplementary material includes a benchmark evalua-
tion on normal maps in Sec. A, our implementation details
in Sec. B, and more visualization of our captured objects in
Sec. C.

A. Benchmark evaluation

In addition to mesh quality, Section A.1 compares the ren-
dered normal map quality of different methods. Section A.2
compares different strategies for rendering the normal maps
of a trained neural SDF.

A.1. Normal evaluation

Normal maps are critical to the quality of physics-based
rendering. Therefore, the quality of the normal maps ren-
dered from a trained SDF or a recovered mesh is another
indicator of the performance of the 3D reconstruction ap-
proach. To evaluate normal accuracy, we use 15 views of
DiLiGenT-MV [16] for training and the remaining 5 views
for testing. Note that PS-NeRF [31] and MVAS [4] use the
same training strategy, while other methods use all 20 views
for reconstruction.

Table 4 reports the mean angular error averaged over all
foreground pixels from the 5 test views. Since volume or
surface rendering does not guarantee unit normal vectors,
we normalize the rendered normal maps before evaluation.
On average, our method outperforms all compared methods
in terms of normal accuracy. Compared to neural rendering
methods, our method achieves a mean angular error 24%
lower than PS-NeRF [31] and 21% lower than MVAS [4].

Figure 9 shows the rendered normal maps and the corre-
sponding angular error maps. Our method produces normal
maps with the best high frequency detail, especially the eyes
of Buddha and the flower pattern on Pot2.

A.2. Normal map rendering at inference time

At training time, we use DFD to compute the SDF gradients
and accumulate the SDF gradients on the rays to obtain the
normal vectors for the pixels. At inference time, however,
we are not restricted to DFD; both FD and AD can be used.
Instead of volume rendering, we can also use surface ren-
dering, i.e., we only compute the SDF gradient at the zero
level set points.

Table 5 compares normal accuracy in terms of mean an-
gular error and rendering time in terms of frames per sec-
ond (FPS) using different strategies for rendering the nor-
mal map. From Tab. 5, all volume rendering based methods
produce close results. Finite difference performs slightly
better, but at the cost of rendering time. It takes 64% more
time to produce 1.1% better results. Surface rendering, on
the other hand, consistently performs worse than volume

Table 4. Quantitative evaluation of rerendered normal maps. Mean
angular error [deg.] averaged on 5 test views are reported. Darker
colors indicate better results.

Methods Bear Buddha Cow Pot2 Reading Average

R-MVPS [23] 12.80 13.67 10.81 14.99 11.71 12.80
B-MVPS [16] 3.80 10.57 2.83 5.76 6.90 5.97
PS-NeRF [31] 3.45 10.25 4.35 5.94 9.36 6.67
MVAS [4] 3.08 9.90 3.72 5.07 10.02 6.36
Ours 2.56 7.64 3.10 4.49 7.40 5.04

Table 5. Normal map rendering accuracy and time using different
strategies to render the normal maps. VR: Volume rendering. SR:
Surface rendering.

Mean angular error [deg.] (#) FPS
Bear Buddha Cow Pot2 Reading Average

VR
DFD 2.56 7.64 3.10 4.49 7.40 5.04 1.8
AD 2.63 7.50 3.16 4.61 7.48 5.08 1.5
FD 2.57 7.29 3.10 4.49 7.43 4.98 1.1

SR AD 3.45 9.75 4.08 5.89 8.80 6.39 3.3

rendering at inference time, even though it is almost three
times faster than volume rendering. There are two possi-
ble reasons for this: 1) the high frequency noise introduced
by multi-resolution hash coding, and 2) the loss function is
defined based on volume rendering, which only encourages
volume rendering results to match the input normal maps.

Figure 10 shows the normal maps rendered from the
same neural SDFs using different rendering strategies and
corresponding angular error maps. All volume rendering
strategies produce visually similar normal maps. This also
validates the approximation accuracy of the DFD. In con-
trast, surface rendering introduces noise into the rendered
normal map.

B. Implementation Details

B.1. Network architecture

Figure 11 shows our neural SDF architecture. The input 3D
coordinate x is transformed by multi-resolution hash en-
coding into a 28-dim feature vector h(x;�). The feature
vector is concatenated with the 3D vector x and input to a
one-layer MLP. We use 64 units and ReLU activation for
the only hidden layer and no activation for the output layer.
Overall, the neural SDF can be written as

f(x) = w2 max

✓
W1

h(x;�)

x

�
+ b1,0

◆
+ b2, (14)

where max(·,0) is the element-wise ReLU function. We
apply a geometric initialization [8] to W1 and w2 so that
the initial zero level set of the neural SDF approximates a
sphere with radius b2. We set b2 = 0.7 as the initial value.
Despite its simplicity, the neural SDF can represent highly
complex geometry, as shown in our reconstruction results.

Mesh rendering Neural rendering

R-MVPS [23] B-MVPS [16] PS-NeRF [31] MVAS [4] Ours GT

� 20�

high

low
0

� 20�
high

low

0

� 20�
high

low

0

Figure 9. Qualitative comparison of normal maps rendered from reconstructed meshes or neural representations and angular error maps.

VR-DFD VR-AD VR-FD SR-AD GT

� 20�
high

low

0

Figure 10. (First row) Normal maps rendered from the trained
neural SDF using different rendering strategies. (Second row) An-
gular error maps.

!()

64
283

1

$
%($; ')

!($)Hash
encoding

3Copy

ReLU

Figure 11. Neural SDF architecture.

B.2. Patch-based ray marching details

Given a patch of pixels, we perform ray marching for the
center ray using NerfAcc [17] package and compute the
points on the remaining rays by finding the ray-plane inter-
sections. We maintain an occupancy grid so that the empty
regions on the rays are skipped for efficient training.

Denote o the ray origin of a patch of rays, vi the center
ray’s unit direction, and vj the unit direction of any remain-
ing rays in the same patch. Suppose we have sampled a
point from the center ray at a distance ti from the ray ori-
gin. According to the geometry, the corresponding point to
be sampled on ray vj should satisfy

(o+ tivi)
>m = (o+ tjvj)

>m. (15)

where m is the marching plane normal. In our case, m is
perpendicular to the image plane where the patch is located.

Rearrange Eq. (15) yields

tj =
tiv>

i m

v>
j m

, (16)

After patch-based ray marching, we obtain the sampled
points for a batch of patches of pixels, stored as a ten-
sor in the shape of (num samples, patch height,
patch width, 3), alone with a 1D tensor in the shape
of (num samples,) indicating to which patch each sam-
ple belong to. num samples is the total number of points
sampled from the center rays of all the patches. We then
compute the SDF gradients using DFD and obtain a ten-
sor in the shape of (num samples, patch height,
patch width, 3).

However, NerfAcc [17] does not support patch-based
volume rendering, i.e., accumulating the SDF gradi-
ents of shape (num samples, patch height,
patch width, 3) into a tensor of shape
(num patches, patch height, patch width,
3). Using a for-loop to process each patch significantly
slows down the volume rendering procedure. To address
this, we modify NerfAcc [17]’s CUDA code to handle
patch-based volume rendering in parallel. As a result,
patch-based volume rendering is as fast as pixel-based
volume rendering, assuming the same amount of pixels.

B.3. Occupancy grid

For efficient training, we periodically update a binary oc-
cupancy grid. Specifically, we update the 1283 occupancy
grid for every 8 batch. The value of each grid is determined
by the SDF value f(x) at that grid:

occ(x) =

(
1, if 1

1+exp(�kf(x)) < ⌧o;

0, otherwise.
(17)

We empirically set k = 80 and use a ⌧o = 0.1 threshold.

B.4. Evaluation metrics

L2 Chamfer distance measures the distance from one set
of points to another. Given two sets of points �1 and �2,
we first define the distance from one point to another set of
points as

dx1!�2 = min
x22�2

kx1 � x2k2 and

dx2!�1 = min
x12�1

kx1 � x2k2.
(18)

The Chamfer distance d(�1,�2) is then defined as

d(�1,�2) =
1

2|�1|
X

x12�1

dx1!�2 +
1

2|�2|
X

x22�2

dx2!�1 .

(19)

F-score is the geometric mean of the precision and recall
of the recovered surfaces to the GT surfaces. Precision and
recall are defined based on the distances from a point to a
set of points as

P =
1

|�1|
X

x12�1

[dx1!�2 < ⌧] and

R =
1

|�2|
X

x22�2

[dx2!�1 < ⌧].
(20)

Here, [·] is the Iverson bracket, and ⌧ is the distance thresh-
old for a point to be considered close enough to a point set.
F-score is then

F =
2PR
P +R . (21)

We set ⌧ = 0.5mm in our evaluations.
To compute Chamfer distance and F-score, we find the

points from the resulting mesh that are visible to the input
views. Specifically, we cast rays for pixels within the mask
and find their first intersection with the mesh. This strategy
avoids the randomness [31] by sampling points randomly
from the mesh and eliminates the effect of invisible regions.

C. More visualization on our objects

Figures 12 to 14 show more visualization results on our
captured objects. Overall, our method produces better sur-
face detail than the MVS method NeuS2 [30], and compa-
rable results to the structured light based scanner. The scan-
ner struggles with dark or concave regions. As shown in
Fig. 14, the details of the dark region of dog are almost miss-
ing in the mesh reconstructed by the scanner. Our method
can sometimes produce fault artifacts, as seen in the hair
part of Fig. 12 and the neck part in Fig. 14.

Image NeuS2 [30] Ours EinScan SE

Figure 12. Qualitative comparison on our captured object Girl.

Image NeuS2 [30] Ours EinScan SE

Figure 13. Qualitative comparison on our captured object Lion.

Image NeuS2 [30] Ours EinScan SE

Figure 14. Qualitative comparison on our captured object Dog.

	. Introduction
	. Related work
	. Multi-view photometric stereo (MVPS)
	. Neural 3D reconstruction
	. Neural 3D reconstruction with normals

	. Approach
	. Pipeline
	. Directional Finite Difference
	. Patch-based Ray Marching

	. Experiments
	. Quantitative evaluation
	. Ablation study
	. Qualitative results on our captured data

	. Discussion
	Appendices
	. Benchmark evaluation
	. Normal evaluation
	. Normal map rendering at inference time

	. Implementation Details
	. Network architecture
	. Patch-based ray marching details
	. Occupancy grid
	. Evaluation metrics

	. More visualization on our objects

