HEAL-SWIN: A Vision Transformer On The Sphere

Supplementary Material

A. Datasets

WoodScape and SynWoodScape For our experiments we
use the WoodScape [49] and the SynWoodScape [45] dataset.
Note that we used the 2k samples which were published at the time
of writing’, instead of the full 80k samples. In all experiments, we
split the available samples randomly (but consistently across mod-
els and runs) into 80% training data and 20% validation data. For
the semantic segmentation task, we use the 10 classes for which
semantic masks are provided in the WoodScape dataset and two
different subsets of the 25 classes for the SynWoodScape dataset.
Table 4 shows the relation between the 25 original classes and the
classes in our two subsets. See Figure 9 for the class prevalences
in the different datasets. Examples of the inconsistent semantic
masks in the WoodScape dataset discussed in the main text can be
found in Figure 10.

In the 2021 CVPR competition for segmentation of the
WoodScape dataset [43], pixels that are labeled with the dominant
void class in the ground truth were excluded from the mloU used
for ranking. Therefore, many teams excluded the void class from
their training loss, resulting in random predictions for large parts
of the image. This shortcoming was noted in [43], but the evalu-
ation score could not be changed after the competition had been
published. Given these circumstances, we decided to include the
void class into our training loss but exclude it from the mean over
classes in the mloU to more accurately reflect the performance of
our models on the more difficult classes. However, this also means
that our results cannot be directly compared to the results of the
competition.

The same problem does not arise for the SynWoodScape
dataset and our two variants since their class lists include all major
structures in the image, leading to a much reduced prevalence of
the void class. Therefore, we include all classes in the mloU for
these datasets.

Stanford  2D-3D-S The  Stanford 2D-3D-Semantic
dataset® [1] consists of 1413 omni-directional RGB-D im-
ages of indoor scenes from six different buildings. These six
areas are used to create an official three fold cross validation
split. Each area has complete semantic segmentation annotations
for 13 object classes and 2 “void” classes: “background” and
“unknown”. For all tasks we map all regions of the “unknown”
class to the “background” class. We normalize all RGB-D input
channels individually and ignore the background class during
training and evaluation, in line with [29].

In contrast to the depth values and the semantic segmentation
ground truth, which exist for the entire sphere, the image RGB
values are non-zero only between —60° and 60°, see Figure 11
for a visualization. For training we chose to map the polar regions

Shttps : / / drive . google . com / drive / folders /
INSrrySiwluh9kLeBuOblMbXJ09YsqO71

Shttp : / /buildingparser . stanford . edu/ dataset .
html

where no non-zero RGB data is present to background which is
ignored during training. In that way the only areas the network is
trained on are those where both RGB and depth values are present.

Removing the polar ground truth affects the computation of
the IoU; specifically for classes that are heavily correlated with
these areas. In the case of the Stanford 2D-3D-S dataset both the
ceiling and floor classes often have large overlap with the polar
regions and hence those classes have a disproportionately large
union, which, in turn, will reduce their IoU-score.

For completeness, we report the IoU for the same trained in-
stance of the mode on both cases: when the polar regions are
mapped to background and when the segmantic ground truth is
kept. The per class IoU metrics for both cases are presented in
Table 5.

In addition, there are degenerate samples in the Stanford 2D-
3D-S dataset in which the ground truth consists only of the back-
ground class. One such sample is shown in Figure 14.

B. Additional experiment:
classification

Spherical image

A common low-resolution dataset on which performance of spher-
ical models is measured is a spherical projection of MNIST. We
project the MNIST digits onto a HEALPix grid of ngiqe = 16,
corresponding to 3072 input pixels, less than the 3600 input pixels
often used on the Driscoll-Healy grid. On this dataset, we train
a HEAL-SWIN classifier consisting of 10 transformer layers fol-
lowed by three fully-connected layers resulting in a model with
about 62k parameters.

We train and evaluate our model both on unrotated data
(NR/NR modality) and on rotated data (R/R modality). In the
NR/NR modality, the task is very simple and most spherical mod-
els (including ours) reach nearly perfect performance, as shown
in Table 7. The R/R modality, in which the images are rotated
by a random rotation in SO(3), is specifically designed for testing
equivariant models. Therefore, these have a substantial advantage
since they do not need to learn the symmetry of the task. In the
R/R modality, our model is only outperformed by some equivari-
ant models and performs better than or on par with all other mod-
els. Note, however, that the equivariant models do not scale to
high-resolution inputs.

C. Experimental details

C.1. SynWoodscape and MNIST experiments

In Table 8 we provide further details on the spatial size of the fea-
tures throughout the HEAL-SWIN model used in the experiments
discussed in Section 4.

Resolution In order to eliminate resolution as a central param-
eter in comparing the HEAL-SWIN to the SWIN, we first rescale
the input images to a size of 640 x 768 giving a resolution of
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Figure 8. Sample RGB image (left) and semantic segmentation ground truth (right) from the Large+AD SynWoodScape dataset, projected
onto the plane for visualization. Regions not covered by the 8/12 base pixels of the HEALPix grid are hatched.

approximately 492k, which we can sample to the HEALPix grid
using nsige = 256 yielding a resolution of around ~ 525k.

Hardware and training details For the semantic segmenta-
tion task we train all models on four Nvidia 240 GPUs with an
effective batch size of 8 and a constant learning rate of 9.4 x 10~%.
For the depth estimation task we used an effective batch size of 4
and learning rates of 5 x 1073 and 5 x 10~° for the HEAL-SWIN
and SWIN models, respectively, chosen from the best performing
models after a learning rate ablation.

Classes and reweighting We adjust the number of output
channels in the base HEAL-SWIN and SWIN models described
in Section 4 to the number of classes and train with a weighted
pixel-wise cross-entropy loss. We choose the class weights w; to

be given in terms of the class prevalences n; by w; = n,; 1/4,

HEAL-SWIN versus SWIN for flat segmentation In Ta-
ble 12, we show the results of evaluating the segmentation models
discussed in Section 4.1 on the plane. In this case, the HEAL-
SWIN predictions are projected onto the pixel grid of the SWIN
predictions before evaluation. To ensure a fair comparison, the
flat mIoU is calculated on a masked region of this grid, removing
pixels which lie outside of the (restricted) HEALPix grid we use.

C.2. Stanford 2D-3D-S experiments

Resolution In order to be close to the resolution used by
HexRUNet [50], we chose nsige = 64 which resulted in 49k pixels
in the HEALPix grid, compared to 20k pixels used for HexRUNet.

Hardware and training details Training was conducted
with a constant learning rate of 5 x 10~ on four Nvidia A100
due to the smaller demand on them compared to the Nvidia
A40 on the compute cluster, although the A40’s would work per-
fectly fine. The experiments on the Stanford 2D-3D-S dataset used
an effective batch size of 80, a small weight decay of 0.1 and a gra-
dient clipping on 0.5 acting on the total gradient 2-norm.

Additional results For a per-class performance breakdown
comparing the HEAL-SWIN model to previous comparable mod-
els, see Table 5 and 6.

In Figure 12 and 13 we show the best and worst predictions of
our model respectively.

Model architecture For a good comparison to
HexRUNet [50] and UGSCNN [29], which have 1.5M and
5.2M parameters, respectively, we construct a HEAL-SWIN
model with 1.5M parameters. Table 10 shows the spatial features
per block. We performed ablations to set window, patch, and shift
sizes, see Table 9.

Computational complexity To verify the limited computa-
tional overhead of the HEAL-SWIN architecture we provide abla-
tions over a range of resolutions in Table 11.



Table 4. Classes from the Large SynWoodScape and the Large+AD SynWoodScape datasets in terms of the classes provided by

SynWoodScape.

Our Classes

SynWoodScape
Large SynWoodScape Large+AD SynWoodScape
unlabeled void void
building building building
fence void void
other void void
pedestrian void pedestrian
pole void void
road line road line road line
road road road
sidewalk sidewalk sidewalk
vegetation void void
four-wheeler vehicle  four-wheeler vehicle four-wheeler vehicle
wall void void
traffic sign void traffic sign
sky sky sky
ground void void
bridge void void
rail track void void
guard rail void void
traffic light void traffic light
water void void
terrain void void
two-wheeler vehicle void two-wheeler vehicle
static void void
dynamic void void

ego-vehicle

ego-vehicle

ego-vehicle

Table 5. Per-class intersection over union of spherical models on the Stanford 2D-3D dataset. The same

evaluated for the cases where the polar ground truth is kept (1) and where it is mapped to background ().

instance of HEAL-SWIN is

Method ‘ mloU ‘ beam board bookcase ceiling chair clutter column door floor sofa table wall window
Gauge CNN [9] 39.4 - - - - - - - - - - - - -
UGSCNN [29] 383 | 87 327 334 822 420 256 10.1 416 87.0 7.6 417 61.7 235
HexRUNet [50] 433 | 109 397 372 848 505 292 11.5 453 929 19.1 49.1 638 294

SPhCNN [18,19] | 402 | - - - - - - - - - - - - -
Spin-SphCNN [19] | 41.9 | - - - - - - - - - - - - -
HEAL-SWIN* 443 | 11.8 428 42.0 672 578 339 129 509 660 245 56.8 68.7 40.2
HEAL-SWINT 473 | 115 428 42.0 83.8 588 338 128 520 87.6 244 568 688 40.2
Table 6. Per-class accuracy of spherical models on the Stanford 2D-3D dataset.

Method \ mAcc \ beam board bookcase ceiling chair clutter column door floor sofa table wall window
Gauge CNN [9] 55.9 - - - - - - - - - - - - -
UGSCNN [29] 547 | 19.6 48.6 49.6 93.6 63.8 43.1 280 632 964 21.0 700 746 39.0
HexRUNet [50] 58.6 | 232 565 62.1 946 667 415 183 645 962 41.1 797 772 411

SphCNN [18, 19] | 52.8 . y y . y y . . . . y . y
Spin-SphCNN [19] | 55.6 - - - - - - - - - - - - -
HEAL-SWIN ‘ 61.9 ‘ 189 583 61.0 956 754 509 20.2 66.5 97.7 413 76.7 889 52.7
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Figure 9. Class distributions for the datasets used in semantic segmentation.



(b) Some (but not all) parked bicycles are labeled as bicycle.

(c) Some (but not all) parked cars are labeled as vehicles.

Figure 10. Examples of inconsistencies in semantic masks of the WoodScape dataset.
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(b) Log of the depth channel. Unknown depth information is represented

as values above ~ 65m, in the figure shown as solid yellow. Those ar-

eas are also prescribed the unknown class in the ground truth (mapped to
(a) The RGB channels. For the polar regions all RGB values are zero and background during training) which are shown in dark blue in Subfigure (c).
hence here shown in black. Note that the polar regions have valid depth values.

latitude
o
latitude
o

Icn?itude Ion?itude

0 13 0 13

(c) Full semantic ground truth. Note that the polar regions have full seman-
tic ground truth even though the RGB channels lack information in these (d) Semantic ground truth with the polar regions mapped to background.
areas. This is what the model is trained on.

Figure 11. Visualisation of a RGBD sample from the Stanford 2D-3D-S dataset. Subfigure (a) shows the RGB channels while Subfigure
(b) displays the depth channels, where areas with unknown depth are shown in solid yellow. These together form the input to the network.
Subfigure (c) shows the full semantic segmentation ground truth with ground truth also in the polar regions. Note that the areas corre-
sponding to background/the unknown class, shown in dark blue, are the same areas that have unknown depth in Subfigure (b). Subfigure
(d) shows the semantic ground truth after the polar regions have been mapped to background which is what the model is trained on.

Table 7. Classification accuracy on spherical MNIST when trained and evaluated on non-rotated data (NR/NR) and on rotated data (R/R).
Equivariant models are marked with an asterisk.

Model NR/NR Acc  R/R Acc

S2CNN* [10] 96 95
Clebsch-Gordan Nets* [30] 96.4 96.6
Gauge CNN* [9] 99.43 99.31
SphCNN* [18, 19] 98.75 98.71
Spherical Transformer* [7] - 95.09
UGSCNN [29] 99.23 94.92
HexRUnet [50] 99.45 97.05

HEAL-SWIN (Ours) 99.20 96.96




(a) The RGB channels.
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(b) The semantic ground truth. (c) The predicted segmentation.

Figure 12. One of the best per sample predictions. Recall that during training the model did not update on areas lacking RGB data. This

sample is from the evaluation set in cross validation fold 1.
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(b) The semantic ground truth. Note that large irregular areas are un-
known (and hence mapped to background). (c) The predicted segmentation.

Figure 13. One of the worst per sample predictions. Recall that during training the model did not update on areas lacking RGB data. This

sample is from the evaluation set in cross validation fold 1.
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(c) Predicted segmentation.

Figure 14. The worst per sample prediction. Note that the predicted segmentation is reasonable but that the ground truth, for some reason,
consists of only the background class. This sample is from the evaluation set in cross validation fold 3. Although neither this nor similar
samples were removed from the dataset during training, they were effectively ignored since the background class is ignored during training.

Table 8. Spatial features per layer in the HEAL-SWIN models used for the experiments described in Section 4.

windows per

layer pixel / patches  windows base piel Nside followed by

input 524288 8192 1024 256  patch embedding
HEAL-SWIN block 1 131072 2048 256 128 patch merging
HEAL-SWIN block 2 32768 512 64 64 patch merging
HEAL-SWIN block 3 8192 128 16 32 patch merging
HEAL-SWIN block 4 2048 32 4 16 patch expansion
HEAL-SWIN block 5 8192 128 16 32 patch expansion
HEAL-SWIN block 6 32768 512 64 64 patch expansion
HEAL-SWIN block 7 131072 2048 256 128  patch expansion

output 524288 8192 1024 256 —




Table 9. Ablations over patch size, window size, shift size and shifting strategy on the Stanford 2D-3D. Performance is measured using the
three-fold cross-validation of that dataset. Unless otherwise stated, the model parameters are npatch = 4, nwin = 64, spiral shifting with
nshire = 4 and the model architecture is the same whose performance is reported in Table 3.

Parameter values mloU mAcc
Mpatch = 4 43.2 61.1
Mpatch = 16 40.9 58.9

Nwin = 04 ngnirg =4 432 61.1
Nwin = 16 Nshift — 2 443 61.9

Nghitt = 2 422 605
Nshift = 4 432  61.1
Nshift = 8 39.3  56.6
spiral shifting 43.2 61.1
grid shifting 42.3 59.9

Table 10. Spatial features per layer in the HEAL-SWIN models used for the Stanford 2D3Ds experiments.

windows per

layer pixel / patches  windows base pixel Nside followed by
input 49152 1536 256 64  patch embedding
HEAL-SWIN block 1 12288 768 64 32 patch merging
HEAL-SWIN block 2 3072 192 16 16 patch merging
HEAL-SWIN block 3 768 48 4 8 patch expansion
HEAL-SWIN block 4 3072 192 16 16 patch expansion
HEAL-SWIN block 5 12288 768 64 32 patch expansion
output 49152 1536 256 64 —

Table 11. Comparison of inference times for HEAL-SWIN and SWIN ablated over data resolution.

Resolution  Pixels time / pixel

HEAL-SWIN 8 x 256.02 5.2-105 297 4 26ns
SWIN 640 x 768  4.9-105 296 4 39ns

HEAL-SWIN 8 x 128.02 1.3-10° 559 4+ 127ns
SWIN 256 x 384 1.0-10° 660+ 171ns

HEAL-SWIN 8 x 64.0>  0.3-105 2031 & 519ns
SWIN 128 x 160  0.2-10% 2792 + 668ns

Table 12. Mean IoU for semantic segmentation with HEAL-SWIN and SWIN, averaged over three runs, after projection onto the plane.
For WoodScape, we exclude the void class from the mean but keep it in the loss.

Model Dataset flat mIoU
HEAL-SWIN Large SynWoodScape 0.899
SWIN Large SynWoodScape 0.930
HEAL-SWIN Large+AD SynWoodScape 0.790
SWIN Large+AD SynWoodScape 0.837
HEAL-SWIN  WoodScape 0.611

SWIN WoodScape 0.620




