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Supplementary Material

A. Datasets

WoodScape and SynWoodScape For our experiments we

use the WoodScape [49] and the SynWoodScape [45] dataset.

Note that we used the 2k samples which were published at the time

of writing5, instead of the full 80k samples. In all experiments, we

split the available samples randomly (but consistently across mod-

els and runs) into 80% training data and 20% validation data. For

the semantic segmentation task, we use the 10 classes for which

semantic masks are provided in the WoodScape dataset and two

different subsets of the 25 classes for the SynWoodScape dataset.

Table 4 shows the relation between the 25 original classes and the

classes in our two subsets. See Figure 9 for the class prevalences

in the different datasets. Examples of the inconsistent semantic

masks in the WoodScape dataset discussed in the main text can be

found in Figure 10.

In the 2021 CVPR competition for segmentation of the

WoodScape dataset [43], pixels that are labeled with the dominant

void class in the ground truth were excluded from the mIoU used

for ranking. Therefore, many teams excluded the void class from

their training loss, resulting in random predictions for large parts

of the image. This shortcoming was noted in [43], but the evalu-

ation score could not be changed after the competition had been

published. Given these circumstances, we decided to include the

void class into our training loss but exclude it from the mean over

classes in the mIoU to more accurately reflect the performance of

our models on the more difficult classes. However, this also means

that our results cannot be directly compared to the results of the

competition.

The same problem does not arise for the SynWoodScape

dataset and our two variants since their class lists include all major

structures in the image, leading to a much reduced prevalence of

the void class. Therefore, we include all classes in the mIoU for

these datasets.

Stanford 2D-3D-S The Stanford 2D-3D-Semantic

dataset6 [1] consists of 1413 omni-directional RGB-D im-

ages of indoor scenes from six different buildings. These six

areas are used to create an official three fold cross validation

split. Each area has complete semantic segmentation annotations

for 13 object classes and 2 ”void” classes: ”background” and

”unknown”. For all tasks we map all regions of the ”unknown”

class to the ”background” class. We normalize all RGB-D input

channels individually and ignore the background class during

training and evaluation, in line with [29].

In contrast to the depth values and the semantic segmentation

ground truth, which exist for the entire sphere, the image RGB

values are non-zero only between −60◦ and 60◦, see Figure 11

for a visualization. For training we chose to map the polar regions

5https : / / drive . google . com / drive / folders /

1N5rrySiw1uh9kLeBuOblMbXJ09YsqO7I
6http : / / buildingparser . stanford . edu / dataset .

html

where no non-zero RGB data is present to background which is

ignored during training. In that way the only areas the network is

trained on are those where both RGB and depth values are present.

Removing the polar ground truth affects the computation of

the IoU; specifically for classes that are heavily correlated with

these areas. In the case of the Stanford 2D-3D-S dataset both the

ceiling and floor classes often have large overlap with the polar

regions and hence those classes have a disproportionately large

union, which, in turn, will reduce their IoU-score.

For completeness, we report the IoU for the same trained in-

stance of the mode on both cases: when the polar regions are

mapped to background and when the segmantic ground truth is

kept. The per class IoU metrics for both cases are presented in

Table 5.

In addition, there are degenerate samples in the Stanford 2D-

3D-S dataset in which the ground truth consists only of the back-

ground class. One such sample is shown in Figure 14.

B. Additional experiment: Spherical image

classification

A common low-resolution dataset on which performance of spher-

ical models is measured is a spherical projection of MNIST. We

project the MNIST digits onto a HEALPix grid of nside = 16,

corresponding to 3072 input pixels, less than the 3600 input pixels

often used on the Driscoll-Healy grid. On this dataset, we train

a HEAL-SWIN classifier consisting of 10 transformer layers fol-

lowed by three fully-connected layers resulting in a model with

about 62k parameters.

We train and evaluate our model both on unrotated data

(NR/NR modality) and on rotated data (R/R modality). In the

NR/NR modality, the task is very simple and most spherical mod-

els (including ours) reach nearly perfect performance, as shown

in Table 7. The R/R modality, in which the images are rotated

by a random rotation in SO(3), is specifically designed for testing

equivariant models. Therefore, these have a substantial advantage

since they do not need to learn the symmetry of the task. In the

R/R modality, our model is only outperformed by some equivari-

ant models and performs better than or on par with all other mod-

els. Note, however, that the equivariant models do not scale to

high-resolution inputs.

C. Experimental details

C.1. SynWoodscape and MNIST experiments

In Table 8 we provide further details on the spatial size of the fea-

tures throughout the HEAL-SWIN model used in the experiments

discussed in Section 4.

Resolution In order to eliminate resolution as a central param-

eter in comparing the HEAL-SWIN to the SWIN, we first rescale

the input images to a size of 640 × 768 giving a resolution of

https://drive.google.com/drive/folders/1N5rrySiw1uh9kLeBuOblMbXJ09YsqO7I
https://drive.google.com/drive/folders/1N5rrySiw1uh9kLeBuOblMbXJ09YsqO7I
http://buildingparser.stanford.edu/dataset.html
http://buildingparser.stanford.edu/dataset.html
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Figure 8. Sample RGB image (left) and semantic segmentation ground truth (right) from the Large+AD SynWoodScape dataset, projected

onto the plane for visualization. Regions not covered by the 8/12 base pixels of the HEALPix grid are hatched.

approximately 492k, which we can sample to the HEALPix grid

using nside = 256 yielding a resolution of around ∼ 525k.

Hardware and training details For the semantic segmenta-

tion task we train all models on four Nvidia A40 GPUs with an

effective batch size of 8 and a constant learning rate of 9.4×10−4.

For the depth estimation task we used an effective batch size of 4

and learning rates of 5×10−3 and 5×10−5 for the HEAL-SWIN

and SWIN models, respectively, chosen from the best performing

models after a learning rate ablation.

Classes and reweighting We adjust the number of output

channels in the base HEAL-SWIN and SWIN models described

in Section 4 to the number of classes and train with a weighted

pixel-wise cross-entropy loss. We choose the class weights wi to

be given in terms of the class prevalences ni by wi = n
−1/4
i .

HEAL-SWIN versus SWIN for flat segmentation In Ta-

ble 12, we show the results of evaluating the segmentation models

discussed in Section 4.1 on the plane. In this case, the HEAL-

SWIN predictions are projected onto the pixel grid of the SWIN

predictions before evaluation. To ensure a fair comparison, the

flat mIoU is calculated on a masked region of this grid, removing

pixels which lie outside of the (restricted) HEALPix grid we use.

C.2. Stanford 2D3DS experiments

Resolution In order to be close to the resolution used by

HexRUNet [50], we chose nside = 64 which resulted in 49k pixels

in the HEALPix grid, compared to 20k pixels used for HexRUNet.

Hardware and training details Training was conducted

with a constant learning rate of 5× 10−3 on four Nvidia A100

due to the smaller demand on them compared to the Nvidia

A40 on the compute cluster, although the A40’s would work per-

fectly fine. The experiments on the Stanford 2D-3D-S dataset used

an effective batch size of 80, a small weight decay of 0.1 and a gra-

dient clipping on 0.5 acting on the total gradient 2-norm.

Additional results For a per-class performance breakdown

comparing the HEAL-SWIN model to previous comparable mod-

els, see Table 5 and 6.

In Figure 12 and 13 we show the best and worst predictions of

our model respectively.

Model architecture For a good comparison to

HexRUNet [50] and UGSCNN [29], which have 1.5M and

5.2M parameters, respectively, we construct a HEAL-SWIN

model with 1.5M parameters. Table 10 shows the spatial features

per block. We performed ablations to set window, patch, and shift

sizes, see Table 9.

Computational complexity To verify the limited computa-

tional overhead of the HEAL-SWIN architecture we provide abla-

tions over a range of resolutions in Table 11.



Table 4. Classes from the Large SynWoodScape and the Large+AD SynWoodScape datasets in terms of the classes provided by

SynWoodScape.

SynWoodScape
Our Classes

Large SynWoodScape Large+AD SynWoodScape

unlabeled void void

building building building

fence void void

other void void

pedestrian void pedestrian

pole void void

road line road line road line

road road road

sidewalk sidewalk sidewalk

vegetation void void

four-wheeler vehicle four-wheeler vehicle four-wheeler vehicle

wall void void

traffic sign void traffic sign

sky sky sky

ground void void

bridge void void

rail track void void

guard rail void void

traffic light void traffic light

water void void

terrain void void

two-wheeler vehicle void two-wheeler vehicle

static void void

dynamic void void

ego-vehicle ego-vehicle ego-vehicle

Table 5. Per-class intersection over union of spherical models on the Stanford 2D-3D dataset. The same instance of HEAL-SWIN is

evaluated for the cases where the polar ground truth is kept (†) and where it is mapped to background (∗).

Method mIoU beam board bookcase ceiling chair clutter column door floor sofa table wall window

Gauge CNN [9] 39.4 – – – – – – – – – – – – –

UGSCNN [29] 38.3 8.7 32.7 33.4 82.2 42.0 25.6 10.1 41.6 87.0 7.6 41.7 61.7 23.5

HexRUNet [50] 43.3 10.9 39.7 37.2 84.8 50.5 29.2 11.5 45.3 92.9 19.1 49.1 63.8 29.4

SphCNN [18, 19] 40.2 - - - - - - - - - - - - -

Spin-SphCNN [19] 41.9 - - - - - - - - - - - - -

HEAL-SWIN∗ 44.3 11.8 42.8 42.0 67.2 57.8 33.9 12.9 50.9 66.0 24.5 56.8 68.7 40.2

HEAL-SWIN† 47.3 11.5 42.8 42.0 83.8 58.8 33.8 12.8 52.0 87.6 24.4 56.8 68.8 40.2

Table 6. Per-class accuracy of spherical models on the Stanford 2D-3D dataset.

Method mAcc beam board bookcase ceiling chair clutter column door floor sofa table wall window

Gauge CNN [9] 55.9 – – – – – – – – – – – – –

UGSCNN [29] 54.7 19.6 48.6 49.6 93.6 63.8 43.1 28.0 63.2 96.4 21.0 70.0 74.6 39.0

HexRUNet [50] 58.6 23.2 56.5 62.1 94.6 66.7 41.5 18.3 64.5 96.2 41.1 79.7 77.2 41.1

SphCNN [18, 19] 52.8 - - - - - - - - - - - - -

Spin-SphCNN [19] 55.6 - - - - - - - - - - - - -

HEAL-SWIN 61.9 18.9 58.3 61.0 95.6 75.4 50.9 20.2 66.5 97.7 41.3 76.7 88.9 52.7



vo
id

ro
ad

la
ne

m
ar

ks
cu

rb

pe
rs

on

rid
er

ve
hi

cl
es

bi
cy

cl
e

m
ot

or
cy

cl
e

tra
ffi

c
si
gn

0

20

40

60

P
er

ce
n

t
o

f
to

ta
l

p
ix

el
s

WoodScape

unlab
ele

d

build
in

g
fe

nce
oth

er

ped
es

tri
an

pole

ro
ad

lin
e

ro
ad

sid
ew

alk

veg
eta

tio
n

fo
ur-w

hee
ler

veh
icl

e
wall

tra
ffi

c sig
n

sk
y

gro
und

brid
ge

ra
il

tra
ck

guar
d

ra
il

tra
ffi

c lig
ht

wate
r

ter
ra

in

tw
o-w

hee
ler

veh
icl

e
sta

tic

dynam
ic

eg
o-v

eh
icl

e
0

10

20

30

40

P
er

ce
n

t
o

f
to

ta
l

p
ix

el
s

SynWoodScape

void

build
in

g

ro
ad

lin
e

ro
ad

sid
ew

alk

fo
ur-w

hee
ler

veh
icl

e
sk

y

eg
o-v

eh
icl

e
0

10

20

30

40

P
er

ce
n

t
o

f
to

ta
l

p
ix

el
s

Large SynWoodScape

void

build
in

g

ped
es

tri
an

ro
ad

lin
e

ro
ad

sid
ew

alk

fo
ur-w

hee
ler

veh
icl

e

tra
ffi

c sig
n

sk
y

tra
ffi

c lig
ht

tw
o-w

hee
ler

veh
icl

e

eg
o-v

eh
icl

e
0

10

20

30

40

P
er

ce
n

t
o

f
to

ta
l

p
ix

el
s

Large+AD SynWoodScape

Figure 9. Class distributions for the datasets used in semantic segmentation.



(a) Large parts of the ego vehicle are labeled as lanemarks.

(b) Some (but not all) parked bicycles are labeled as bicycle.

(c) Some (but not all) parked cars are labeled as vehicles.

Figure 10. Examples of inconsistencies in semantic masks of the WoodScape dataset.



(a) The RGB channels. For the polar regions all RGB values are zero and

hence here shown in black.

(b) Log of the depth channel. Unknown depth information is represented

as values above ∼ 65m, in the figure shown as solid yellow. Those ar-

eas are also prescribed the unknown class in the ground truth (mapped to

background during training) which are shown in dark blue in Subfigure (c).

Note that the polar regions have valid depth values.

(c) Full semantic ground truth. Note that the polar regions have full seman-

tic ground truth even though the RGB channels lack information in these

areas.

(d) Semantic ground truth with the polar regions mapped to background.

This is what the model is trained on.

Figure 11. Visualisation of a RGBD sample from the Stanford 2D-3D-S dataset. Subfigure (a) shows the RGB channels while Subfigure

(b) displays the depth channels, where areas with unknown depth are shown in solid yellow. These together form the input to the network.

Subfigure (c) shows the full semantic segmentation ground truth with ground truth also in the polar regions. Note that the areas corre-

sponding to background/the unknown class, shown in dark blue, are the same areas that have unknown depth in Subfigure (b). Subfigure

(d) shows the semantic ground truth after the polar regions have been mapped to background which is what the model is trained on.

Table 7. Classification accuracy on spherical MNIST when trained and evaluated on non-rotated data (NR/NR) and on rotated data (R/R).

Equivariant models are marked with an asterisk.

Model NR/NR Acc R/R Acc

S2CNN* [10] 96 95

Clebsch-Gordan Nets* [30] 96.4 96.6

Gauge CNN* [9] 99.43 99.31

SphCNN* [18, 19] 98.75 98.71

Spherical Transformer* [7] – 95.09

UGSCNN [29] 99.23 94.92

HexRUnet [50] 99.45 97.05

HEAL-SWIN (Ours) 99.20 96.96



(a) The RGB channels.

(b) The semantic ground truth. (c) The predicted segmentation.

Figure 12. One of the best per sample predictions. Recall that during training the model did not update on areas lacking RGB data. This

sample is from the evaluation set in cross validation fold 1.

(a) The RGB channels. Note that this sample is very visually noisy.

(b) The semantic ground truth. Note that large irregular areas are un-

known (and hence mapped to background). (c) The predicted segmentation.

Figure 13. One of the worst per sample predictions. Recall that during training the model did not update on areas lacking RGB data. This

sample is from the evaluation set in cross validation fold 1.



(a) RGB channels.

(b) Ground truth. (c) Predicted segmentation.

Figure 14. The worst per sample prediction. Note that the predicted segmentation is reasonable but that the ground truth, for some reason,

consists of only the background class. This sample is from the evaluation set in cross validation fold 3. Although neither this nor similar

samples were removed from the dataset during training, they were effectively ignored since the background class is ignored during training.

Table 8. Spatial features per layer in the HEAL-SWIN models used for the experiments described in Section 4.

layer pixel / patches windows
windows per

base pixel
nside followed by

input 524288 8192 1024 256 patch embedding

HEAL-SWIN block 1 131072 2048 256 128 patch merging

HEAL-SWIN block 2 32768 512 64 64 patch merging

HEAL-SWIN block 3 8192 128 16 32 patch merging

HEAL-SWIN block 4 2048 32 4 16 patch expansion

HEAL-SWIN block 5 8192 128 16 32 patch expansion

HEAL-SWIN block 6 32768 512 64 64 patch expansion

HEAL-SWIN block 7 131072 2048 256 128 patch expansion

output 524288 8192 1024 256 —



Table 9. Ablations over patch size, window size, shift size and shifting strategy on the Stanford 2D-3D. Performance is measured using the

three-fold cross-validation of that dataset. Unless otherwise stated, the model parameters are npatch = 4, nwin = 64, spiral shifting with

nshift = 4 and the model architecture is the same whose performance is reported in Table 3.

Parameter values mIoU mAcc

npatch = 4 43.2 61.1

npatch = 16 40.9 58.9

nwin = 64 nshift = 4 43.2 61.1

nwin = 16 nshift = 2 44.3 61.9

nshift = 2 42.2 60.5

nshift = 4 43.2 61.1

nshift = 8 39.3 56.6

spiral shifting 43.2 61.1

grid shifting 42.3 59.9

Table 10. Spatial features per layer in the HEAL-SWIN models used for the Stanford 2D3Ds experiments.

layer pixel / patches windows
windows per

base pixel
nside followed by

input 49152 1536 256 64 patch embedding

HEAL-SWIN block 1 12288 768 64 32 patch merging

HEAL-SWIN block 2 3072 192 16 16 patch merging

HEAL-SWIN block 3 768 48 4 8 patch expansion

HEAL-SWIN block 4 3072 192 16 16 patch expansion

HEAL-SWIN block 5 12288 768 64 32 patch expansion

output 49152 1536 256 64 —

Table 11. Comparison of inference times for HEAL-SWIN and SWIN ablated over data resolution.

Resolution Pixels time / pixel

HEAL-SWIN 8× 256.0
2

5.2 · 10
5 297 ± 26ns

SWIN 640× 768 4.9 · 10
5 296 ± 39ns

HEAL-SWIN 8× 128.0
2

1.3 · 10
5 559 ± 127ns

SWIN 256× 384 1.0 · 10
5 660 ± 171ns

HEAL-SWIN 8× 64.0
2

0.3 · 10
5 2031 ± 519ns

SWIN 128× 160 0.2 · 10
5 2792 ± 668ns

Table 12. Mean IoU for semantic segmentation with HEAL-SWIN and SWIN, averaged over three runs, after projection onto the plane.

For WoodScape, we exclude the void class from the mean but keep it in the loss.

Model Dataset flat mIoU

HEAL-SWIN Large SynWoodScape 0.899

SWIN Large SynWoodScape 0.930

HEAL-SWIN Large+AD SynWoodScape 0.790

SWIN Large+AD SynWoodScape 0.837

HEAL-SWIN WoodScape 0.611

SWIN WoodScape 0.620


