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A. Broader Impact Statement
Video data is a sensitive modality and its use in healthcare
must come in conjunction with patient consent and clinical
assessment. In sleep medicine, video polysomnography is
considered the gold-standard monitoring technique, and the
use of video enables accurate diagnoses of specific condi-
tions such as REM behaviour disorder [8]. For wider ap-
plications, the algorithms introduced in this work have been
designed such that the video data can be processed into in-
termediate motion and cardio-respiratory signals for further
processing offline. This means it is possible for camera data
to be processed in real-time without being stored.

Machine learning methods have the potential to make a
transformative impact in healthcare. However, they should
be appropriately evaluated across diverse populations and
in real-world scenarios, to understand their limitations, mit-
igate potential biases, and reduce clinical risk. In future
work, we plan to evaluate the performance of our method
across a broader population, including a greater number of
older individuals and individuals with darker skin tones, and
individuals with diagnosed sleep disorders.

B. Oxford Sleep Volunteers Dataset
Throughout this work, we used the video polysomnogra-
phy dataset introduced by Carter et al. [1] for our video-
based sleep staging experiments, which we refer to as the
Oxford Sleep Volunteers (OSV) dataset. Figure 10 shows
the two camera viewpoints and room layouts present in the
dataset, along with transformed frames, and approximate
head, body and outer bed regions. The homography trans-
formations and regions were manually determined from the
known camera parameters and room geometry. For more in-
formation on the dataset, including population demograph-
ics and room geometries, we refer to the original work [1].

C. Additional SleepVST Results
Additional model hypnograms. Additional examples of
sleep hypnograms generated using SleepVST from video
data are shown in Figure 16.

Cohen’s κ distribution across datasets. Figure 11
shows the distribution of Cohen’s κ values with age across
all three datasets. Despite being trained on contact sen-
sor waveforms from much older subjects in the SHHS
and MESA datasets, SleepVST successfully transfers to
video-derived waveforms, nearly reaching parity with per-

Figure 10. Example processing of near-infrared video frames
from the OSV dataset. (a) Real viewpoints and bed positions
for each room. (b) Cropped, virtual viewpoints obtained using
homography transformations. (c) Head (H), body (B), and outer
(O) bed regions.

formance using contact sensors. This highlights the effec-
tiveness and generality of the learnt feature space. Given the
well-known changes in autonomic activity with age [15],
pre-training with additional data from younger subjects may
further improve transfer learning performance on the exist-
ing dataset. As may fine-tuning the entire SleepVST net-
work on video data, rather than freezing the weights and
using it as a fixed feature extractor. Conversely, more video
data from older participants during the transfer learning
phase would likely help to improve the performance for the
existing older participants.

Pre-training confusion matrices. Figures 12 and 13
show the four-class sleep staging confusion matrices ob-
tained after pre-training, for the SHHS and MESA test sets
respectively. During pre-training, we chose to use an un-
balanced cross-entropy loss. Using a class-weighted loss
instead would likely help to reduce the observed rate of mis-
classification of (less frequent) N3 sleep.

Varying classification strategy. In Table 6, we report
the performance of our method for different sleep stage
classification strategies, to aid future comparisons. In each
case, we use the same SleepVST model (pre-trained on
four-class sleep staging) as a feature extractor, and train a
new classifier using video data.



Figure 11. Scatter and box plots of Cohen’s κ and age distributions
across the SHHS, MESA and OSV datasets.

Figure 12. SleepVST confusion matrix with expert labels, evalu-
ated on the SHHS test set.

Table 6. Video-based sleep staging performance using SleepVST
with different classification strategies.

κµ κT Accµ / % AccT / %

Sleep–Wake 0.782±0.197 0.857 93.3±5.4 93.7
W–NREM–REM 0.760±0.139 0.795 87.4±6.6 87.9
W–N1/N2–N3–REM 0.677±0.133 0.708 77.7±8.9 78.8
W–N1–N2–N3–REM 0.646±0.139 0.674 74.1±10.7 75.3

Additional motion feature ablations. Table 7 shows
the effectiveness of the remaining components of our mo-
tion feature set. Higher thresholds (δ = 1) measure the
elapsed time since large movements, which are more impor-
tant for overall agreement κT . Lower thresholds (δ = 0.01)
are more sensitive to smaller movements e.g. brief awaken-
ings, leading to greater agreement around fragmented sleep

Figure 13. SleepVST confusion matrix against expert labels, eval-
uated on the MESA test set.

κF .

Table 7. Ablation of motion feature parameters T, δ and ∆.

Cohen’s κ

Ablation Parameter Set n∗
f κT κF

Threshold(s) δ ∈ {0.01} 54 0.698 0.485
δ ∈ {0.1} 54 0.702 0.486
δ ∈ {1} 54 0.705 0.471
δ ∈ {0.01, 0.1, 1} 90 0.708 0.491

Time shift(s) T ∈ {0} 30 0.705 0.464
T ∈ {-90, 0, 90} 90 0.708 0.491

Window(s) ∆ ∈ {30} 72 0.706 0.486
∆ ∈ {300} 72 0.705 0.472
∆ ∈ {30, 300} 90 0.708 0.491

∗No. features.

D. SleepVST Architecture Details
Convolutional encoder. Each convolutional layer, denoted
‘Kx1 Conv, M’ in Figure 4, consisted of 1D convolutions
with kernel size K, stride 1, and M output channels, fol-
lowed by batch normalisation [3], and ReLU activation.

Transformer encoder. The parameters of our trans-
former encoder are detailed in Table 8, these values were
informed by the original design of Vaswani et al. [12]. To
improve training stability, we employed pre-layer normali-
sation [14] within each transformer encoder layer.

Training. Each training run was performed using a sin-
gle NVIDIA A10 GPU with 24 GB RAM. Using a sequence
length of two hours (N=240) and our default architecture,
we used a batch size of 128, the largest power of two that
could fit on the GPU. We employed early-stopping to ter-
minate training once there had been no improvement in the



Table 8. SleepVST transformer encoder parameters.

Architecture Parameter Value

Encoder layers 6
Self-attention heads 8
Encoder dropout probability 0.1
MLP size 512

validation loss for three consecutive epochs, restoring the
model checkpoint that achieved the minimum value. The
training run which produced our best model took 6.4 h.
All models were implemented using the PyTorch [5] frame-
work.

E. Transformer Output Tiling

Because of the quadratic complexity of the original Trans-
former [12], we used an input sequence length of N=240
epochs, i.e. two hours, to the SleepVST model. This is
much shorter than the sleep recordings within each dataset,
which typically last between 8 and 12 hours. To apply
SleepVST to these longer sequences, we re-applied the
model at up to 30-minute steps, resulting in multiple outputs
for timesteps away from the start and end of the recording.
Using this approach, the model can be applied to 10 hours
of waveform data in ≈ 0.8 s.

When directly applying the pre-trained SleepVST
model, e.g. to SHHS and MESA test sets, we took the mode
of the overlapping classifications as the output classifica-
tion. This is illustrated in Figure 14.

Figure 14. Classifying longer input sequences using SleepVST.
After applying the model to overlapping two-hour sub-sequences,
the modal classification at each timestep is used as the output clas-
sification.

Similarly, when using SleepVST as a feature extractor
on video-derived waveforms, we re-applied the model at in-
tervals to produce overlapping two-hour sequences of fea-
ture vectors. For timesteps with multiple feature vectors,
we used the feature vector which was closest to the middle
of a sequence. This is illustrated in Figure 15.

Figure 15. Extracting features from longer input sequences
using SleepVST. The model is applied to two-hour input sub-
sequences, producing overlapping output feature sequences. For
each timestep, we use the feature vector which is closest to the
middle of a sequence.

F. Optical Flow Estimation
We used the Dense Inverse Search algorithm [4] to calcu-
late the optical flow field at a frequency of 4 Hz from the
homography-transformed frames, following the same pro-
cedure as [1].

G. Cohen’s Kappa Calculation
From a confusion matrix M ∈ RC×C with elements mij ,
the function K : RC×C → R which calculates Cohen’s κ
statistic is given by:

K(M) = 1−
∑

i,j wijmij∑
i,j wijeij

(9)

where wij and eij are defined as follows:

wij =

{
0 if i = j

1 otherwise
(10)

eij =
(
∑

i′ mi′j) ·
(∑

j′ mij′

)
∑

i′j′ mi′j′
(11)



(a) Cohen’s κ = 0.84 between model and expert labels.

(b) Cohen’s κ = 0.64 between model and expert labels.

(c) Cohen’s κ = 0.39 between model and expert labels.

Figure 16. Example four-class sleep hypnograms from the OSV dataset for various model–expert Cohen’s κ agreement values. Within
each subfigure, the top hypnogram shows expert labels annotated using signals from the vPSG recording, and the bottom hypnogram shows
labels automatically generated from near-infrared video using our method.



H. SHHS Test Set
The 500 randomly sampled participant IDs used to form
our test set are as follows:

203949, 204944, 200702, 203956, 202106, 201917, 203231, 204150, 205275, 203034, 201936, 205025,

200885, 201204, 204594, 201308, 204960, 205608, 204379, 203354, 204125, 204330, 203384, 201213, 201598,

204495, 204590, 203944, 203945, 202921, 201287, 203495, 205462, 204068, 203423, 202981, 203505, 204079,

204939, 203390, 204179, 204885, 202435, 202157, 202834, 200825, 203684, 205299, 200897, 200152, 202828,

203530, 203312, 205398, 203984, 202801, 203264, 201453, 203652, 200460, 202820, 204638, 203367, 205565,

200839, 203213, 204016, 204473, 200751, 201206, 200927, 201608, 201102, 205494, 201399, 200730, 202948,

200293, 204865, 203520, 204795, 200953, 203125, 205340, 205009, 204825, 200752, 202794, 203165, 203306,

203490, 204041, 202383, 204656, 203772, 203829, 204517, 201557, 202650, 203308, 203564, 202210, 200991,

205663, 203559, 204303, 200513, 205664, 202152, 204928, 203974, 200851, 205169, 205645, 204256, 201783,

201414, 204540, 204661, 203894, 201373, 202496, 200718, 202227, 200243, 203826, 202946, 203446, 202123,

200604, 201058, 205704, 204798, 205346, 204823, 203748, 203824, 200680, 200698, 203166, 204140, 205072,

203512, 200646, 205744, 200679, 204295, 201670, 204486, 203316, 203511, 200998, 204335, 200886, 202968,

204409, 205575, 202943, 205082, 203200, 200321, 205226, 200899, 203845, 202940, 200687, 200948, 203311,

200769, 200782, 203925, 200666, 202480, 201521, 205593, 200507, 203282, 204001, 205601, 203372, 204988,

204269, 203946, 205257, 200176, 204231, 204530, 204963, 200145, 200888, 202187, 200088, 203882, 203286,

204418, 200578, 204273, 200823, 203065, 205349, 203106, 200217, 202912, 203566, 200154, 201323, 200662,

204289, 205651, 203252, 205044, 201024, 203716, 204232, 200632, 200102, 205450, 200566, 202521, 202563,

200584, 203192, 201298, 205485, 205739, 204617, 204642, 201331, 205596, 203202, 203381, 204956, 203522,

200303, 203534, 204190, 201130, 201268, 200191, 201513, 200955, 203689, 203157, 201401, 201517, 202489,

203018, 203232, 205146, 202963, 202821, 204287, 204422, 204472, 200334, 200925, 203135, 200516, 202442,

204171, 203392, 201503, 202458, 205587, 203502, 203626, 204702, 204599, 200150, 205605, 202566, 204296,

202221, 203296, 205537, 203860, 200842, 200318, 204023, 202463, 201628, 200858, 205419, 201068, 205312,

202663, 202444, 200579, 201629, 203198, 204283, 204846, 204699, 200178, 200981, 203237, 200564, 204340,

202785, 202938, 204506, 201493, 203610, 201353, 203769, 200105, 204522, 204343, 204086, 200320, 204425,

202842, 204459, 202226, 203528, 204978, 204461, 204691, 200111, 201083, 200950, 200108, 203455, 204647,

200952, 204443, 204435, 204504, 205064, 203476, 203695, 203721, 202201, 200841, 200935, 204093, 201223,

201470, 204747, 205350, 204871, 203303, 204132, 201219, 204676, 201402, 205722, 204115, 200744, 205772,

203281, 204926, 205086, 202990, 203235, 204384, 201432, 203039, 200387, 203961, 203456, 203462, 202546,

203895, 205595, 204496, 201241, 205004, 200712, 204565, 203671, 200936, 201271, 203734, 202428, 203260,

200653, 204405, 201982, 200703, 203314, 202405, 200668, 205702, 204431, 202608, 203056, 204544, 203754,

205761, 203942, 200835, 200192, 205539, 200945, 203254, 204177, 200219, 205486, 202642, 202417, 203498,

203347, 204759, 202361, 205255, 201064, 201544, 200295, 204233, 204187, 202150, 204224, 204370, 204952,

200571, 203976, 204304, 200347, 205126, 203224, 200591, 203060, 201543, 204923, 201778, 204914, 205222,

204907, 200766, 205305, 204235, 200406, 205661, 200209, 204778, 201640, 204236, 200901, 205356, 200853,

200210, 204898, 203269, 203451, 202825, 201299, 204690, 203557, 203589, 203037, 204337, 204460, 201316,

201312, 204856, 203138, 203412, 200242, 203460, 200920, 200887, 201918, 203395, 205530, 201349, 200829,

203208, 201519, 200386, 203117, 200466, 202605, 203121, 200624, 205721, 204323, 204554, 205289, 204934,

200233, 203149, 204170, 203966, 205252, 205548, 203006, 202902, 203818, 202942, 201018, 205588, 202395,

203709, 205591, 205532, 204763, 202829, 205626, 201538.
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