Your Image is My Video: Reshaping the Receptive Field via Image-To-Video
Differentiable AutoAugmentation and Fusion

Supplementary Material

A. Overview

This supplementary material is organized as follows. We
first introduce the proof for Eq. (5) and Eq. (6), which moti-
vate our choice in the final transformations selection, based
on a perturbation approach (Sec. B). We then present the
implementation details for our method, giving an overview
of the hyper-parameters utilized (Sec. C), and provide the
details for the best transformations found by DAS for the
Image-to-Video setup (Sec. D). We conduct an additional
ablation study to further prove the effectiveness of our ap-
proach by testing the results under a re-shuffle operation,
which motivates the need for the GSF as temporal shift
mechanism (Sec. E). For completeness, we report the result
of DAS in the “standard” setup of Image-to-Image, where
auto-augmentation methods are usually employed and com-
pare with two SOTA approaches, i.e. AutoAugment (AA)
and RandAugment (RA), conducting ablations studies to
highlight the difference with respect to DAS (Sec. F). We
conclude with more qualitative results for the semantic seg-
mentation datasets (Sec. G) and with an additional ablation
on Cifar100 testing performance robustness with reduced
data (Sec. H).

B. Proof of Equations 5, 6

Let 0y = Softmax(r;) and 07 = Softmaz(rr). Then
the mixed operation in Eq. 4 can be re-written as m(z) =
Orxp + 0rxy. The objective can be formally formulated as:

0y +6r =1 (10)

min = var(m(z) — m”*) s.t.
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This constraint optimization problem can be solved with
Lagrangian multiplies:
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Setting partial derivatives to 0
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we obtain equations whose solution are

Orvar(T(x) — m*) 4+ Orcov[T(x) — m*, z —m*] (20)

= Orvar(x — m*) + Opcov[T(x) — m™, x — m*]

Substituting 7 with (1 — 61) we get:

o — var(z — m*) —cov[Z’(x) —m*, x —m* 21

where z = var(T(z) — m*) + var(z — m*) — 2cov[T'(x) —
m*, x —m*]. Similarly we obtain
var(T(x) — m*) — cov[(T(z) — m*,x — m*]

03 = 22
T . (22)
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Given that §; = —£

mﬁ, with i = I, T, we obtain:

77 = log[var(z — m*) — cov(T(x) — m*,x — m*)] + C
(23)

77 = log[var(T'(z) — m*) — cov(T'(x) — m*,x — m*)] + C

(24)

where the only difference between 7; and 7 is the first
term inside the logarithm. Therefore, if we choose the op-
eration associated to the largest 7, assuming it is related to
the strength of the transformation, we will always end up
choosing identity operations. This proof applies also for
search spaces with more than two operations, as the trans-
formation 7" previously defined as a translation can be seen
as the composition of multiple transformations.



C. Implementation details

Our hyper-parameters are summarized in Tab 9. We kept
the same hyper-parameters during the search phase and the
training from scratch, with the only difference in the addi-
tional optimizer needed for the Architect neural network.
Such a network, responsible for the topology optimization,
was trained with Adam optimizer, with 3e — 4 as learning
rate and 1e — 3 as weight decay-rate. For all image datasets
we applied standard augmentation techniques, such as ran-
dom horizontal flip, random crop,and cutout, on the inputs
to the DAS cell. Every image, after being augmented, un-
dergoes the temporal expansion, achieved through an im-
age replication. Transformations are then applied inside the
DAS cell to each frame so that smoothness and continuity
are kept during the video generation. The image replica-
tion module acts as a “stem” module to allow multiple cells
with multiple nodes. Inference cost is not affected, as DAS
is involved only during training.

D. Example of cells found by DAS

We provide the graph visualization for the cells found by
DAS for Cifar100 (Fig. 7a), ImageNet (Fig. 7b), Pascal-
VOC (Fig. 7¢) and Cityscapes (Fig. 7d). We do not report
the results for Cifarl0 and Tiny ImageNet as the found cell
is the same as Cifar100 and ImageNet, respectively. This
justifies the results previously introduced in Tab. 8 for Cifar-
10.

E. Additional ablations on DAS for Image-to-
Video

Tab. 10 compares the results we previously showed in Tab. 5
in the main paper, with an additional experiment to prove
the need for the GSF component. To this aim, the frames
of the video input (obtained with the best transformations
found by DAS) are randomly shuffled with the goal of loos-
ing the temporal continuity. This experiment aims at show-
ing that both components, DAS and GSF, are needed, but
does not imply a limitation of DAS in the search space def-
inition. As the optimization of the DAS cell to find the op-
timal transformations occurs during the training of the net-
work, even given a huge search space with non continuous
transformations, DAS will optimize to find the best trans-
formations that lead to the highest validation accuracy for
that architecture. As a result, as we show with further ex-
periments in Sec. F the approach stays robust even under
noisy transformations. The experiments are run with a PSP-
Net with ResNet-50 backbone for Pascal-VOC dataset and
with ResNet-18 for Cifar10 dataset. For each dataset, we
show the accuracy (first row) the # of parameters (second
row) and the number of flops (third row) with an input size
32 % 32 and 400 x 400 for Cifar10 and Pascal-VOC, respec-

tively. Finally, Fig. 8 gives an example of our RF (left) and
standard 2d CNN (right) for an ImageNet sample.

The little difference in the “re-shuffle” experiment per-
formed for Pascal-VOC and Cifar-10 datasets with respect
to the baseline and DAS Aug S is probably due to perturba-
tions. The temporal shift mechanism, i.e. GSF, is designed
to learn to shift features among adjacent frames. However,
if those features are not consistent across the time dimen-
sion, GSF correctly learns not to route gated features. As a
result, the experiment reconducts to processing data augem-
nted as in DAS Aug S with a 2D backbone integrated with
a temporal shift mechanism that learns not to shift.

F. Experiments on DAS for Image-to-Image
F.1. Comparison with SOTAs

Tab. 11 compares our Differentiable Augmentation Search
with other SOTA auto-augmentation techniques, i.e. AA [1]
and RA [2] for the task of image-to-image. This means
that no temporal expansion is performed, and a compara-
ble search-space usually deployed for finding standard data-
augmentation is defined. Similar to AA and RA, we define
in our search space the following set of transformations:
Shear X/Y, Translate X/Y, Rotate, AutoContrast, Invert,
Equalize, Solarize, Posterize, Color, Brightness, Sharpness,
Cutout, and Identity that corresponds to applying no trans-
formation. We run experiments on Cifar-10, Cifar-100,
SVHN, and ImageNet, for this set of experiments, we did
not fix a budget time for the required search time. Following
RA setup, for comparison purposes, we employed a Wide-
ResNet-28-2 for the first three datasets, and a ResNet-50
model for ImageNET.

DAS out-performs previous auto-augmentation methods
in all datasets but SVHN, where it equals RA performance.

F.2. Advantages of DAS

We ablate now on the importance of introducing our dif-
ferentiable algorithm highlighting the two main drawbacks
of the cited competitors. On the one hand, AA is extremely
competitive in terms of obtained accuracy, surpassing RA in
Cifar-10, Cifar-100, and having equal performance on Im-
agenet. However, AA is extremely slow, requiring 15000
GPU hours to look for the optimal policy on a reduced Ima-
geNet. On the other hand RA is extremely efficient, as it re-
duces the search space to 102 different choices, but we argue
it is not robust when introducing not relevant transforma-
tions. The authors of [2] indeed show that when introduc-
ing color transformations in the Cifar-10 experiments, they
experience a degradation of validation accuracy on average.
This implies that one needs to carefully design the search
space, and cannot include transformations that potentially
may harm the performance on the dataset. A justification
for such a behaviour is due to their search space definition,



Cifar10 Cifar100 Tiny ImageNet Pascal-VOC CityScapes
Optimization
Image size (32,32) (32,32) (64,64) (224,224) (380, 380) (1024,1024)
Optimizer SGD SGD SGD SGD SGD SGD
Batch size 96 96 64 32 32 16
Learning rate scheduler step decay step decay step decay step decay poly poly
Base Learning rate 0.1 0.1 0.1 0.1 0.03 0.03
Weight decay le-4 le-4 Se-4 le-4 le-4 le-4
Epochs 90 90 90 100 80 130
Number of segments 8 8 8 8 8 8

Table 9. Hyperparameters employed for our experiments.
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Figure 7. Best transformations found by DAS.

Figure 8. Receptive Field shape difference between our method
(left) and standard 2D CNNis (right).

where a transformation is selected with uniform probability
1/K. This implies that as the number of K transformations
in the search space increases, the probability is reduced, and
the time required to find the best transformations increases.
On the other hand, under a fixed searching-time budget,
this results in a higher variability when the procedure is
run multiple times. Evidence supporting this is displayed
in Fig. 9, where we fix for Cifar-10 a searching budget time
of 24 hours, and exacerbate this behaviour by progressively
adding a noise transformation.

(d) Cityscapes.
Baseline  DAS Aug () Re-shuffle Ours
Pascal 85.40 85.51 85.44 86.10
51.32M 5143 M
16.55 Gflops 16.67 Gflops
Cifar10 94.12 94.23 94.15 95.12
11.18 M 11.20M
37.12 Mflops 37.12 Mflops

Table 10. Additional ablation experiments. Baseline was obtained
with the 2D backbone with standard augmentation techniques.
“DAS Aug (S)” stands for the inclusion of additional DAS aug-
mentations in Space S, meaning that the data is processed by a
2D backbone. Re-shuffle processes the input in the same way as
DAS Aug (S) but stacks the transformations in the temporal di-
mension to create a video, and subsequently re-shuffles the frames
of the video. “Ours” processes the input obtained with DAS with
temporal continuity preserved. The backbone for the last two ex-
periments is 2D+temporal shift.

G. Segmentation results

We provide more segmentation results on Pascal (Fig. 11)
and CityScapes (Fig. 12) datasets. In our the figures we
provide the original image (first column), the ground truth
(second column), results from DeepLabv3 (column 3) and
results with our methods (column 4). We highlight with a
square the details where attention should be put to appreci-
ate the difference in the results. We observe in our method,



search | Cifar-10 Cifar-100 SVHN | ImageNet
space WRN WRN WRN ResNet
Baseline 0 94.90 75.40 96.70 76.30
AA 1032 95.90 78.50 98.00 77.60
RA 102 95.80 78.30 98.30 77.60
DAS 1013 96.10 78.90 98.30 77.90

Table 11. Comparison among different auto-augmentation meth-
ods. WRN stands for Wide-ResNet-28-2, while ResNet is the
ResNet-50 model. Best results are bolded.
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Figure 9. Results on Cifar-10 for each auto-augmentation tech-
nique. Experiments are run 5 times, with the shaded area repre-
senting the variance.
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Figure 10. Top-1 test accuracy on Cifar-100 dataset given different
portion of removed training dataset.

as general behaviour, a stronger capability in reconstruct-
ing details, e.g. the back part of the airplane, the details
in the motorcycle, plants in Pascal-VOC, street lamps in
Cityscapes. We also see that, with respect to the baseline,
fewer classes are misclassified, as it can be seen for the por-
tion of the table in the sixth row of Pascal-VOC results, in
traffic lights in the third row of Cityscapes results, and in
the sidewalk of the sixth row of Cityscapes.

H. Generalizability with reduced training data

To strengthen our point we run a further ablation on Ci-
far100, shown in Fig. 10. When reducing the size of the
dataset, we barely experience a performance degradation

(compared to standard augmentations (Aug) and to DAS
augmnentations not concatenated in time (DAS Aug S)),
finding a very useful application in scenarios where few
data are available. Compared to finding new data, the cost
of representing an image as a video is largely reduced.
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Figure 11. VOC qualitative results. Original image (a), Ground Truth (b), DeepLabv3 (c) and Ours (d) images are displayed.
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Figure 12. City qualitative results. Original image (a), Ground Truth (b), DeepLabv3 (c) and Ours (d) images are displayed.
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