
Supplementary – Table of Contents
In this supplementary material, we provide following addi-
tional details regarding the proposed model and data:
• In Section A we describe how traing and eval data was

obtained. Visualizations of real and fake image pairs for
all evaluation datasets in the proposed SynRIS bench-
mark can be found in the end of the document in Fig. F.1-
F.7.

• In Section B we provide a derivation of the relationship
(8) from the main paper - connecting likelihood with inver-
sion maps, DDIM discretization and reconstruction errors.

• In Section C we provide technical details of how our model
was trained: architecture, inversion and captioning models
we used.

• In Section D we provide extended evaluation results: Av-
erage Precision (AP) and overall accuracy for all evaluated
methods, ROC, PR and DET curves, evaluation of robust-
ness to prompt shift and fine-tuning, and the effect of text
conditioning.

• In Section E we discuss how baselines were trained and
issues we encountered when evaluating DIRE.

• In Section F, we include sample visualizations from the
various datasets of our SynRIS benchmark.

Ethics and Limitations
The ultimate goal of this work is to prevent abuse and the
spread of misinformation, an inherently ethical task. When
generating our datasets, we sourced our prompts from an
existing database. As such, some of the generated images
may inadvertently contain inappropriate content. We explic-
itly address misalignment between fake and real images in
our training and evaluation to ensure that the detector is not
favouring any styles or themes to avoid marginalization of
any groups.

While our method performs well at detecting images
from existing diffusion models, this same performance may
not transfer well to text-to-image models that do not make
use of diffusion, such as text-to-image GANs (GigaGAN
[28]) and transformers (Muse [15]). Training our model also
requires significantly more compute than similar methods
(CNNDetect [54], DMDetect [17]) since we must first pass
all training images through our inversion pipeline.

Acknowledgements
We would like to thank J. P. Lewis, David Marwood,
Shumeet Baluja, Sergey Ioffe and Arkanath Pathak for their
feedback and technical advise.

A. Data
In this section we discuss how training and evaluation
datasets were generated. Our new training set along with

all our RIS-based evaluation benchmark can be found at our
project page: [will be released with camera ready].

A.1. Training Data

We train our method and other baselines on two different
training sets: ProGAN + LSUN and DiffusionDB + LAION
(DDB-L).

A.1.1 ProGAN+LSUN

Authors of CNNDetect [54] introduced this dataset along
with their GAN detection method. This dataset consists of
360k real images from LSUN [59] and 360k fake images
generated by ProGAN [30], each composed of 20 different
classes. All real and fake images are 256x256 resolution.

A.1.2 Stable Diffusion+LAION

For this training set, we took random 300k fake images
from DiffusionDB [56] and random 300k images from
LAION [49] with predicted aesthetic scores of 6.25 or higher.
Note that DiffusionDB consists of images from Stable Diffu-
sion v1.

A.2. Evaluation Data - Fakes

This sections provides detail how each evaluation dataset’s
fake images were obtained.

A.2.1 Imagen

We obtained Imagen images from authors of Imagen – they
generated them using an internal closed API using the same
prompt distribution that was used to train the Imagen model.

A.2.2 Midjourney

For our Midjourney images, we use this dataset on Hugging
Face (link). These images were scraped from the Midjourney
Discord server. This dataset includes a tag indicating whether
or not the image was “upscaled” by the user. We choose
images that had been upscaled since they are presumably
of higher quality (since the user spent additional credits to
upscale them).

A.2.3 DALL·E 3

For our DALL·E 3 images, we use this dataset on Hug-
ging Face (link). These images were generated by users and
shared on the LAION Discord server.

A.2.4 Kandinsky 2

For our Kandinsky 2 images, we use the Kandinsky 2.2 [51]
model from Hugging Face (link), using the default parame-
ters given in their usage example:

https://huggingface.co/datasets/wanng/midjourney-v5-202304-clean
https://huggingface.co/datasets/laion/dalle-3-dataset
https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder

• prior guidance scale=1.0
• height=768
• width=768
• negative prompt=‘‘low quality, bad
quality’’

A.2.5 Kandinsky 3

For our Kandinsky 3 images, we use the Kandinsky 3 [10]
model from Hugging Face (link), using the default parame-
ters given in their usage example:
• num inference steps=50

A.2.6 PixArt-α

For our PixArt-α [16] images, we use the 1024 resolution
model from Hugging Face (link). All parameters are left as
their defaults.

A.2.7 Playground 2.5

For our Playground 2.5 images, we use the Playground 2.5
[31] model from Hugging Face (link), using the default pa-
rameters given in their usage example:
• num inference steps
• guidance scale=3

A.2.8 SDXL Direct Preference Optimization

For our SDXL-DPO images, we use the SDXL-DPO [53]
model from Hugging Face (link), with the default parameters
given in their usage example:
• guidance scale=5

A.2.9 Stable Diffusion XL

For our SDXL images, we use the Stable Diffusion XL [41]
model from Hugging Face (link), using both the base and
refiner models with the default parameters given in their
usage example:
• num inference steps=40
• denoising end=0.8
• denoising start=0.8

A.2.10 Segmind Mixture of Experts

For our Seg-MoE images, we use the SegMoE-4x2-v0 [58]
model from Hugging Face (link), with the default parameters
given in their usage example:
• negative prompt=‘‘nsfw, bad quality,
worse quality’’

• height=1024
• width=1024
• num inference steps=25
• guidance scale=7.5

A.2.11 Segmind Stable Diffusion 1B

For our SSD-1B [21] images, we use the SSD-1B model
from Hugging Face (link), using the default parameters given
in their usage example:
• negative prompt="ugly, blurry, poor
quality"

A.2.12 Stable Cascade

For our Stable Cascade [39] images, we use the Stable Cas-
cade model from Hugging Face (link), using the default
parameters given in their usage example for the prior model:
• height=1024
• width=1024
• guidance scale=4.0
• num inference steps=20
and decoder model:
• guidance scale=0.0
• num inference steps=10

A.2.13 Segmind Vega

For our Segmind Vega [21] images, we use the Segmind
Vega model from Hugging Face (link), using the default
parameters given in their usage example:
• negative prompt="(worst quality,
low quality, illustration, 3d, 2d,
painting, cartoons, sketch)"

A.2.14 Würstchen 2

For our Wüerstchen [39] images, we use the Wüerstchen v2
model from Hugging Face (link), using the default parame-
ters given in their usage example:
• height=1024
• width=1024
• prior guidance scale=4.0
• decoder guidance scale=0.0
We will also include images and results from Wüerstchen v3,
which is currently in beta development.

A.3. Evaluation Data - Reals

The corresponding real images for all of our evaluation sets
were found via a reverse image search API provided by one
of the major image search engines.

B. Derivations

In this section we show the relationship between likelihood,
DDIM inversion and DDIM reconstruction error. Notably,
in the first approximation, it can be expressed using these
terms without explicit dependency on model parameters θ.

https://huggingface.co/kandinsky-community/kandinsky-3
https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS
https://huggingface.co/playgroundai/playground-v2.5-1024px-aesthetic
https://huggingface.co/mhdang/dpo-sdxl-text2image-v1
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
https://huggingface.co/segmind/SegMoE-4x2-v0
https://huggingface.co/segmind/SSD-1B
https://huggingface.co/stabilityai/stable-cascade
https://huggingface.co/segmind/Segmind-Vega
https://huggingface.co/warp-ai/wuerstchen

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

ROC Curve

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PR Curve

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

DET Curve

LAION
WebLI
RIS

UFD (ProGAN + LSUN) Fakes from Imagen

Figure A.1. Receiver Operating Characteristic (left) Precision-Recall (middle) and Detection Error Tradeoff (right) curves for detecting
Imagen versus real images from its training set WebLI [60] (red), Reverse Image Search (green) and LAION (orange). These curves show
that Imagen versus RIS is indeed a significantly harder task than Imagen versus LAION [49] and matches Imagen versus WebLI.

B.1. Derivation of Eq. (8)

Given an appropriate change of variable f we know:
log p(x) = logpz(f

−1(x)) + log detJ[f−1](x)

Rewriting the negative log Jacobain determinant as:

− log detJ[f−1](x)

= log detJ[f](f−1(x))

=Tr
(
log J[f](f−1(x))

)
=Tr

(∞∑
k=1

(−1)k+1

(
J[f](f−1(x))− I)

)k
k

)
(take the first term)

≈Tr
(
J[f](f−1(x))− I

)
∝Tr

(
J[f](f−1(x))

)
(use Hutchinson estimator, assuming µv = 0,Σv = I)

=Ev⟨v,J[f](f−1(x)) v⟩
(reparametrize with δ such that µδ = 0,Σδ = σδI)

=Eδ⟨δ,J[f](f−1(x)) δ⟩/σ2
δ

(take a single sample estimate)

≈⟨δ,J[f](f−1(x)) δ⟩/∥δ∥2

(Taylor expansion of f around f−1(x))

≈⟨δ, f(f−1(x) + δ)− f(f−1(x))⟩/∥δ∥2

=⟨δ, f(f−1(x) + δ)− x⟩/∥δ∥2

and substituting
x = x0

f−1(x) = xT

f−1(x) + δ = x̂T

f(f−1(x) + δ) = x̂0

and assuming a small enough isotropic δ, in the first approx-

imation, we get:
log p(x0) ∝ logpz(xT)− ⟨δ, x̂0 − x0⟩/∥δ∥2

C. Training Details
In this section, we detail the various components of the
pipeline used to train our detector.

C.1. Captioning

We use the BLIP-2, OPT-2.7b [32] model from Hugging
Face (link) to caption our images before inversion and after
and augmentations. Captioning is done after any augmenta-
tion since the augmentations could significantly change the
caption (e.g., an RGB image converted to grayscale).

C.2. Inversion

We base our inversion process on Pix-to-Pix Zero [38], mak-
ing use of the Hugging Face implementation (link) without
the additional attention map guidance and other regularizers.

We first resize to 512×512 and then invert all images
(training and evaluation) using the same Stable Diffusion 1.5
[45] checkpoint from Hugging Face (link).

C.3. Training

The original images, inverted noise maps, and denoised re-
constructions are then concatenated along the channel di-
mension and used as input to a ResNet-50 [22]. We train
our detector for 25 Epochs, but most of the performance is
gained in the first few. We otherwise use the same hyper-
parameters as CNNDet [54].

D. Extended Results
D.1. Extended metrics

In Table D.1 and Table D.2 we show AP and Acc@EER
metrics for all experiments in addition to AUCROC. Figures

https://huggingface.co/stabilityai/stable-diffusion-2-1-unclip
https://huggingface.co/docs/diffusers/api/pipelines/pix2pix_zero
https://huggingface.co/runwayml/stable-diffusion-v1-5

Train Data ProGAN + LSUN Stable Diffusion + LAION

Eval Set | Model CNNDet UFD Ours CNNDet† UFD† Ours

DALL·E 2 [44] 0.499 0.694 0.867 0.653 0.750 0.751
DALL·E 3 [12] 0.473 0.384 0.625 0.703 0.474 0.756
Midjourney v5/6 [2] 0.498 0.419 0.736 0.602 0.555 0.643
Imagen [46] 0.474 0.582 0.759 0.705 0.553 0.791

Kandinsky 2 [51] 0.493 0.479 0.764 0.592 0.547 0.695
Kandinsky 3 [10] 0.491 0.470 0.860 0.654 0.605 0.755
PixArt-α [16] 0.490 0.502 0.871 0.623 0.625 0.744
Playground 2.5 [31] 0.510 0.462 0.778 0.556 0.571 0.617
SDXL-DPO [53] 0.495 0.475 0.849 0.829 0.683 0.874
SDXL [41] 0.506 0.470 0.777 0.799 0.651 0.792
Seg-MOE [58] 0.490 0.428 0.800 0.644 0.611 0.704
SSD-1B [21] 0.544 0.509 0.840 0.714 0.613 0.787
Stable-Cascade [39] 0.508 0.399 0.892 0.712 0.656 0.766
Segmind Vega [21] 0.524 0.475 0.834 0.723 0.612 0.796
Würstchen 2 [39] 0.508 0.592 0.803 0.600 0.670 0.712

DALL·E 2 [44] (A) 0.160 0.256 0.620 0.202 0.216 0.587
Craiyon [18] (A) 0.621 0.977 0.893 0.737 0.922 0.876
LDM [45] (A) 0.598 0.933 0.897 0.901 0.924 0.976

Average 0.493 0.528 0.804 0.664 0.624 0.757

Table D.1. Main Results – Detector Average Precision. In the main paper, we report the AUCROC metric when evaluating our classifiers.
We report AP (Average Precision) here for completeness as well. We observe similar trends: our method performs best across nearly all
datasets. ∗Note: This DMDet classifier was trained with fakes from an LDM checkpoint rather than Stable Diffusion. †These models were
re-trained by us.

Figures D.2 to D.7 show ROC, PR and DET curves for all
compared classifiers.

D.2. Very Out-of-Distribution Data

The generators analyzed thus far are trained to be general
aesthetic text-to-image models.

Here, we evaluate our model on models that have been
fine-tuned generate images from very specific domains:
Anime and Pokémon. Table D.3 shows that even when using
low-quality training data (ProGAN), our model still general-
izes to these very out-of-distribution domains while existing
methods (UFD [37], CNNDet [54]) completely fail, even
performing worse than random guessing.

D.3. Text-Conditioning

In Figure D.1, we show the effect of text-conditioning on the
inversion-reconstruction process. By using text-conditioning,
we recover a more faithful reconstruction of the input image,
providing better signal for our model.

E. Baselines

E.1. DIRE [55]

The DIRE [55] paper reports almost perfect detection
performance on all unseen test sets. However, after their
code was released, several researchers noticed a fundamental
issue with the training and evaluation setup present in
their released code and checkpoints (link) causing the
in-the-wild performance to drop to near-random levels.
More specifically, all pre-processed images used for training
are saved with the same extension as the source images.
Since all input real images in the training set are saved as
*.JPG files and all fake images are saved as *.PNG files,
all real DIRE images used to train and evaluate the network
were embedded with JPEG artifacts while the non of the
fake images used for training and evaluation were. As such,
the model seemingly learned to detect the presence of JPEG
artifacts. This holds even for the robustness experiments
since augmented real and fake images are also saved as JPG
and PNG respectively. In all of our datasets, both real and
fake images are saved as lossless *.PNG files, explaining
DIRE’s poor performance on all our test sets. To honor the
contribution of DIRE authors, we conducted an ablation that

https://github.com/ZhendongWang6/DIRE/issues/11

Train Data ProGAN + LSUN Stable Diffusion + LAION

Eval Set | Model CNNDet UFD Ours CNNDet† UFD† Ours

DALL·E 2 [44] 0.470 0.674 0.773 0.624 0.700 0.678
DALL·E 3 [12] 0.435 0.371 0.592 0.659 0.473 0.698
Midjourney v5/6 [2] 0.490 0.413 0.661 0.595 0.558 0.606
Imagen [46] 0.470 0.580 0.706 0.674 0.538 0.720

Kandinsky 2 [51] 0.490 0.483 0.687 0.574 0.541 0.652
Kandinsky 3 [10] 0.481 0.478 0.766 0.609 0.600 0.684
PixArt-α [16] 0.485 0.504 0.769 0.591 0.606 0.669
Playground 2.5 [31] 0.508 0.477 0.707 0.553 0.562 0.591
SDXL-DPO [53] 0.486 0.473 0.764 0.761 0.647 0.801
SDXL [41] 0.497 0.473 0.688 0.735 0.620 0.737
Seg-MOE [58] 0.472 0.429 0.725 0.625 0.586 0.664
SSD-1B [21] 0.545 0.506 0.748 0.665 0.585 0.724
Stable-Cascade [39] 0.477 0.383 0.802 0.652 0.633 0.694
Segmind Vega [21] 0.522 0.476 0.741 0.676 0.587 0.733
Würstchen 2 [39] 0.504 0.580 0.715 0.580 0.640 0.658

DALL·E 2 [44] (A) 0.656 0.620 0.590 0.556 0.562 0.558
Craiyon [18] (A) 0.610 0.917 0.783 0.699 0.836 0.810
LDM [45] (A) 0.591 0.845 0.793 0.837 0.840 0.933

Average 0.510 0.538 0.723 0.648 0.617 0.700

Table D.2. Main Results – Acc @ Equal Error Rate. We further report Acc@EER here as an additional metric. We observe similar trends:
our method performs best across nearly all datasets. ∗Note: This DMDet classifier was trained with fakes from an LDM checkpoint rather
than Stable Diffusion. †These models were re-trained by us.

Detection Method
Eval Set Ours UFD CNNDet

Anime 0.67 0.13 0.34
Pokémon 0.83 0.32 0.48

Table D.3. AUCROC. When trained on lower-quality data
(ProGAN), existing methods (UFD [37], CNNDet [54]) completely
fail to generalize to our extremely out-of-distribution datasets,
even doing worse than randomly guessing. On the other hand,
our method continues to generalize well.

used the exact same absolute residuals signals as reported in
DIRE paper. It is evident from our results that the inversion
signals we propose in this paper perform much better then
DIRE signals across all evaluation benchmarks.

E.2. CNNDet [54]

We trained using the original CNNDet training code (link)
using following default parameters.
• --name blur jpg prob=0.5
• --blur prob=0.5
• --blur sigma=0.0,0.3
• --jpeg prob=0.5
• --jpeg method=cv2,pil
• --jpeg qual=30,100
All training and eval images are resized to 256×256 and
saved as .PNG files.

E.3. UFD [37]

We trained using the original UFD training code (link) using
following default parameters.
• --name=clip vitl14
• --wang2020 data path=datasets
• --data mode=wang2020
• --arch=CLIP:ViT-L/14
• --fix backbone
All training and eval images are resized to 256×256 and
saved as .PNG files.

https://github.com/peterwang512/CNNDetection
https://github.com/Yuheng-Li/UniversalFakeDetect

Real (LAION) a group of models on the
runway with children

Real (LAION) a painting of a street with
horses and carts

Fake (DALL·E 3) a group of people in white suits
walking through a desert

Fake (DALL·E 3) an illustration of a futuristic
city with buildings and water

Original Images DDIM Reconstructions
Text-Conditioned Unconditional

null

null

null

null

Figure D.1. Unconditional DDIM inversion and reconstruction
catastrophically fails to reconstruct the original image. To remedy
this, we predict a caption using BLIP 2 [32] and use this for text
conditioning.

F. SynRIS Visualization
Figures F.1 to F.4 contain samples from our evaluation sets
using closed-source models. Figures F.5 to F.15 contain sam-
ples from our evaluation sets using open-source models. The
corresponding images in each of these open-source model
figures were generates using the same prompts. The top panel
consists of fake images either found online or generated by
us, and the bottom panel are the corresponding real images
found via reverse image search.

Figures F.16 and F.17 contain samples from our Pokémon
and Anime datasets respectively. The real images were taken
from a source dataset [6, 40] and the attached captions were
used to generate the fake images with SD Pokémon Dif-
fusers [4] and Animagine [7].

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

DALL·E 2

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

DALL·E 3

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Midjourney

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Imagen

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Kandinsky 2

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Kandinsky 3

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

PixArt-

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Playground 2.5

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

SDXL-DPO

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

SDXL

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Seg-MoE

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

SSD-1B

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Stable Cascade

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Segmind Vega

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Würstchen 2

CNNDet
UFD
Ours

ROC Curves (ProGAN + LSUN)

Figure D.2. ROC curves for all 15 of our SynRIS evaluation datasets. Models trained on ProGAN+LSUN.

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

DALL·E 2

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

DALL·E 3

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Midjourney

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Imagen

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Kandinsky 2

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Kandinsky 3

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

PixArt-

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Playground 2.5

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

SDXL-DPO

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

SDXL

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Seg-MoE

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

SSD-1B

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Stable Cascade

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Segmind Vega

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

TN
R

Würstchen 2

CNNDet
UFD
Ours

ROC Curves (SD + LAION)

Figure D.3. ROC curves for all 15 of our SynRIS evaluation datasets. Models trained on SD+LAION.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

DALL·E 2

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

DALL·E 3

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Midjourney

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Imagen

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Kandinsky 2

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Kandinsky 3

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PixArt-

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Playground 2.5

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SDXL-DPO

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SDXL

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Seg-MoE

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SSD-1B

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Stable Cascade

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Segmind Vega

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Würstchen 2

CNNDet
UFD
Ours

Precision-Recall Curves (ProGAN + LSUN)

Figure D.4. Precision-Recall curves for all 15 of our SynRIS evaluation datasets. Models trained on ProGAN+LSUN.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

DALL·E 2

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

DALL·E 3

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Midjourney

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Imagen

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Kandinsky 2

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Kandinsky 3

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

PixArt-

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Playground 2.5

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SDXL-DPO

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SDXL

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Seg-MoE

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

SSD-1B

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Stable Cascade

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Segmind Vega

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Würstchen 2

CNNDet
UFD
Ours

Precision-Recall Curves (SD + LAION)

Figure D.5. Precision-Recall curves for all 15 of our SynRIS evaluation datasets. Models trained on SD+LAION.

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

DALL·E 2

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

DALL·E 3

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Midjourney

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Imagen

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Kandinsky 2

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Kandinsky 3

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

PixArt-

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Playground 2.5

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

SDXL-DPO

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

SDXL

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Seg-MoE

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

SSD-1B

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Stable Cascade

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Segmind Vega

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Würstchen 2

CNNDet
UFD
Ours

Detection Error Tradeoff Curves (ProGAN + LSUN)

Figure D.6. Detection Error Tradeoff curves for all 15 of our SynRIS evaluation datasets. Models trained on ProGAN+LSUN.

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

DALL·E 2

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

DALL·E 3

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Midjourney

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Imagen

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Kandinsky 2

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Kandinsky 3

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

PixArt-

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Playground 2.5

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

SDXL-DPO

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

SDXL

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Seg-MoE

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

SSD-1B

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Stable Cascade

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Segmind Vega

0.0 0.2 0.4 0.6 0.8 1.0

FPR

0.0

0.2

0.4

0.6

0.8

1.0

FN
R

Würstchen 2

CNNDet
UFD
Ours

Detection Error Tradeoff Curves (SD + LAION)

Figure D.7. Detection Error Tradeoff curves for all 15 of our SynRIS evaluation datasets. Models trained on SD+LAION.

Fake (Imagen [46])

Real (Reverse Image Search)

Figure F.1. Top: A sample of fake Imagen [46] images we generated for our dataset. Bot: Corresponding real images found via RIS.

Fake (Midjourney [2])

Real (Reverse Image Search)

Figure F.2. Top: A sample of fake Midjourney [12] images taken from Hugging Face (link). Bot: Corresponding real images found via RIS.

https://huggingface.co/datasets/wanng/midjourney-v5-202304-clean

Fake (DALL·E 2 [44])

Real (Reverse Image Search)

Figure F.3. Top: A sample of fake DALL·E 2 [44] images taken from the DMDetect [17] repo (link). Bot: Corresponding real images found
via RIS.

https://github.com/grip-unina/DMimageDetection

Fake (DALL·E 3 [12])

Real (Reverse Image Search)

Figure F.4. Top: A sample of fake DALL·E 3 [12] images taken from Hugging Face (link). Bot: Corresponding real images found via RIS.

https://huggingface.co/datasets/laion/dalle-3-dataset

Fake (Kandinsky 2 [51])

Real (Reverse Image Search)

Figure F.5. Top: A sample of fake Kandinsky 2 [51] images we generated for our dataset. Bot: Corresponding real images found via RIS.

Fake (Kandinsky 3 [10])

Real (Reverse Image Search)

Figure F.6. Top: A sample of fake Kandinsky 3 [10] images we generated for our dataset. Bot: Corresponding real images found via RIS.

Fake (PixArt-α [16])

Real (Reverse Image Search)

Figure F.7. Top: A sample of fake PixArt-α [16] images we generated for our dataset. Bot: Corresponding real images found via RIS.

Fake (Playground 2.5 [31])

Real (Reverse Image Search)

Figure F.8. Top: A sample of fake Playground [31] images we generated for our dataset. Bot: Corresponding real images found via RIS.

Fake (SDXL-DPO [53])

Real (Reverse Image Search)

Figure F.9. Top: A sample of fake SDXL-DPO [53] images we generated for our dataset. Bot: Corresponding real images found via RIS.

Fake (SDXL [41])

Real (Reverse Image Search)

Figure F.10. Top: A sample of fake SDXL [41] images we generated for our dataset. Bot: Corresponding real images found via RIS.

Fake (Seg-MoE [58])

Real (Reverse Image Search)

Figure F.11. Top: A sample of fake Seg-MoE [58] images we generated for our dataset. Bot: Corresponding real images found via RIS.

Fake (SSD-1B [21])

Real (Reverse Image Search)

Figure F.12. Top: A sample of fake SSD-1B [21] images we generated for our dataset. Bot: Corresponding real images found via RIS.

Fake (Stable-Cascade [39])

Real (Reverse Image Search)

Figure F.13. Top: A sample of fake Stable-Cascade [39] images we generated for our dataset. Bot: Corresponding real images found via RIS.

Fake (Segmind Vega [21])

Real (Reverse Image Search)

Figure F.14. Top: A sample of fake Segmind Vega [21] images we generated for our dataset. Bot: Corresponding real images found via RIS.

Fake (Würstchen 2 [39])

Real (Reverse Image Search)

Figure F.15. Top: A sample of fake Würstchen 2 [39] images we generated for our dataset. Bot: Corresponding real images found via RIS.

Fake (SD Pokémon Diffusers [4])

Real (Pokémon [5])

Figure F.16. Top: A sample of fake Pokémon images we generated for our dataset. Bot: Corresponding real images. The above fake images
were generated using the BLIP [32] captions of these real images as prompts [40].

Fake (Animagine XL 2.0 [7])

Real (Danbooru [6])

Figure F.17. Top: A sample of fake Anime images we generated for our dataset. Bot: Corresponding real images from the (SFW) Danbooru
2022 dataset [6]. The above fake images were generated using the Danbooru tags of these real images as prompts.

	. Introduction
	. Related Work
	. Method
	. Experiments
	. Results
	. Conclusion
	. Data
	. Training Data
	ProGAN+LSUN
	Stable Diffusion+LAION

	. Evaluation Data - Fakes
	Imagen
	Midjourney
	DALL·E 3
	Kandinsky 2
	Kandinsky 3
	PixArt-
	Playground 2.5
	SDXL Direct Preference Optimization
	Stable Diffusion XL
	Segmind Mixture of Experts
	Segmind Stable Diffusion 1B
	Stable Cascade
	Segmind Vega
	Würstchen 2

	. Evaluation Data - Reals

	. Derivations
	. Derivation of eq:logprob

	. Training Details
	. Captioning
	. Inversion
	. Training

	. Extended Results
	. Extended metrics
	. Very Out-of-Distribution Data
	. Text-Conditioning

	. Baselines
	. DIRE wang2023dire
	. CNNDet wang2019cnngenerated
	. UFD ufd

	. SynRIS Visualization

