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S1. Further Insights on Certainty Map

As we discussed in Section 3.3 in the main manuscript,
the conventional method of averaging multiple annotations
and thresholding the averages pixel-wise has the problem of
losing information about both rarely labeled edges and the
number of times edges are labeled. In this section, we pro-
vide further insight by comparing the conventional annota-
tion method with our certainty map calculation. From the
figure, we see, for example, that∼78% of edges are labeled
in only one ground-truth annotation (the lowest certainty)
in the Multi-cue (edge) dataset. On the other hand, this per-
centage drops to ∼9% in certainty map c. Therefore, using
certainty map c provides a great advantage for our sorting
task which gives more importance to higher certainty edges.

Furthermore, we provide a visual comparison between
conventional averaging and our certainty map Figure S2.
We see that our uncertainty map c ensures that pixels within
the specified distance have the same certainty value, while
the conventional approach does not.

S2. More Results on NYUD-v2

This section provides quantitative results for different in-
put types (RGB, HHA, and RGB-HHA). NYUD-v2 [23]
is published with both RGB and depth images. Also, us-
ing these depth images in HHA encoding [13] provides
significant performance gain. By following the literature
[6, 8, 15, 21, 24], we present results, shown in Table S1 for
HHA and RGB-HHA (averaging of RGB and HHA results)

Figure S1. Comparison between Averaging Multiple Annotations
(Standard Processing of Label) vs Certainty map c (Ours) on
Multi-cue [20] and BSDS [1] datasets. While y-axes (percentage
(%)) are the percentages of total edge pixels, x-axes (Number of
Times Edge Pixels are Labeled in Multiple Annotations) show how
many times edge pixels are labeled in multiple annotations.

inputs. According to Table S1, while we have the best re-
sults for AP measures in all input types, PiDiNet [24] has
better performance than ours in ODS and OIS measures for
HHA and RGB-HHA inputs in general. This can be ex-
plained by the usage of pre-trained weights. While PiDiNet
is a lightweight edge detector that does not require any pre-
trained weights, our model is initialized with weights of Im-
ageNet [4]. Using weights trained on RGB images provides
less performance gain for HHA inputs.

1



(a) Standard Processing ( Averaging Multi-label)

(b) Ours (Certainty Map)

Figure S2. Visual comparisons between Standard label processing and our certainty map on BSDS [1] dataset.

Method Pub.’Year RGB HHA RGB-HHA
ODS OIS AP ODS OIS AP ODS OIS AP

gPb-ucm [1] PAMI’11 .632 .661 .562 - - - - - -
Silberman et al. [23] ECCV’12 .658 .661 - - - - - - -
gPb+NG [12] CVPR’13 .687 .716 .629 - - - - - -
OEF [14] CVPR’15 .651 .667 - - - - - - -
HED [27] ICCV’15 .720 .734 .734 .682 .695 .702 .746 .761 .786
COB [19] ECCV’16 - - - - - - .784 .805 .825
RCF [18] CVPR’17 .729 .742 - .705 .715 - .757 .771 -
AMH-Net [28] NeurIPS’17 .744 .758 .765 .717 .729 .734 .771 .786 .802
LPCB [6] ECCV’18 .739 .754 - .707 .719 - .762 .778 -
BDCN [15] CVPR’19 .748 .763 .770 .707 .719 .731 .765 .781 .813
PiDiNet [24] ICCV’21 .733 .747 .715 .728 .756 - .773 .813
EDTER [21] CVPR’22 .774 .789 .797 .703 .718 .727 .780 .797 .814
ACTD [8] Neurocomp.’23 .762 .774 - .723 .739 - .783 .791 -
RANKED (R) - .780 .793 .826 .723 .735 .760 .791 .805 .841

Table S1. Quantitative comparisons on NYUD-v2 [23]. All results are computed with a single scale input. The best and second-best results
are shown with bold and underlined texts, respectively. R: Ranking only.

S3. More Results on BSDS500

In this section, we provide Precision-Recall curves, quanti-
tative results for different inputs (single-scale, multi-scale),
and training set settings (with and without Pascal VOC).

Figure S6 shows the Precision-Recall curves for the
SOTA methods and ours. Our method with multi-scale in-
puts has the best curve among the SOTA methods.

Moreover, we present detailed comparisons on the BSDS
dataset shown in Table S2. We see that our method provides
the best AP measures for all inputs and training settings ex-
cept for SS+VOC (0.1 behind UAED [31]).

S4. More Results on Multi-cue
This section provides uncertainty-aware results (UaR) for
the Multi-cue dataset shown in Table S3. Like UaR on
the BSDS dataset in Table 6 of the main paper, our model
gives a better performance for lower uncertainty (higher cer-
tainty) pixels.

S5. More Visual Results
This section presents more visual results in Figures S3, S4,
and S5 on NYUD-v2, BSDS, and Multi-cue datasets, re-
spectively. All results are obtained after the post-processing
step. In general, using ranking and sorting tasks together
(R+S) gives better visual results and OIS scores than using
only ranking task (R) in BSDS and Multi-cue datasets.



Method SS MS SS+VOC MS+VOC
ODS OIS AP ODS OIS AP ODS OIS AP ODS OIS AP

Canny [3] (PAMI’86) .611 .676 .520 - - - - - - - - -
gPb-UCM [1] (PAMI’10) .729 .755 .745 - - - - - - - - -
SCG [26] (NeurIPS’12) .739 .758 .773 - - - - - - - - -
SE [9] (PAMI’14) .743 .764 .800 - - - - - - - - -
OEF [14] (CVPR’15) .746 .770 .815 - - - - - - - - -
DeepEdge [2] (CVPR’15) .753 .772 .807 - - - - - - - - -
DeepContour [22] (CVPR’15) .757 .776 .790 - - - - - - - - -
HED [27] (ICCV’15) .788 .808 .840 - - - - - - - - -
DeepBoundary [16] (ICLR’15) .789 .811 .789 .803 .820 .848 .809 .827 .861 .813 .831 .866
CEDN [30] (CVPR’16) .788 .804 - - - - - - - - - -
RDS [17] (CVPR’16) .792 .810 .818 - - - - - - - - -
COB [19] (ECCV’16) .793 .820 .859 - - - - - - - - -
AMH-Net [28] (NeurIPS’17) .798 .829 .869 - - - - - - - - -
RCF [18] (CVPR’17) .798 .815 - - - - .806 .823 - .811 .830 .846
CED [25] (CVPR’17) .803 .820 .871 - - - .815 .833 .889 - - -
LPCB [6] (ECCV’18) .800 .816 - - - - .808 .824 - .815 .834 -
BDCN [15] (CVPR’19) .806 .826 .847 - - - .820 .838 .888 .828 .844 .890
DSCD [5] (ACMMM’20) .802 .817 - - - - .813 .836 - .822 .859 -
LDC [7] ( ACMMM’21) .799 .816 .837 - - - .812 .826 .857 .819 .834 .860
PiDiNet [24] (ICCV’21) - - - - - - .807 .823 - - - -
FCL-Net [29] (NN’22) .807 .822 - .816 .833 - .815 .834 - .826 .845 -
EDTER [21] (CVPR’22) .824 .841 .880 .840 .858 .896 .832 .847 .886 .848 .865 .903
UAED [31] (CVPR’23) .829 .847 .892 .837 .855 .897 .838 .855 .902 .844 .864 .905
CHRNet [10] (Pat. Rec.’23) - - - - - - .787 .788 .801 .830 .853 .870
ACTD [8] (Neurocomp.’23) .817 .836 .839 - - - .821 .837 .850 .826 .842 .854

RANKED (Ranking Only) .822 .838 .886 .829 .850 .900 .833 .848 .901 .844 .860 .916
RANKED (Ranking & Sorting) .824 .840 .895 .837 .855 .911 NA NA NA NA NA NA

Table S2. Quantitative results on BSDS dataset [1]. SS and MS represent single-scale and multi-scale, respectively. +VOC means that
Pascal Context Data [11] is used as additional training data. The best and second-best results are shown with bold and underlined texts,
respectively. Moreover, NA means not applicable due to a lack of uncertainty in the labels.

High uncertainty←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Low uncertainty

B
ou

nd
ar

y c ≥ 0.2 c ≥ 0.4 c ≥ 0.6 c ≥ 0.8 c = 1.0
Method ODS OIS AP ODS OIS AP ODS OIS AP ODS OIS AP ODS OIS AP

RANKED (R) 0.954 0.959 0.992 0.959 0.964 0.994 0.965 0.970 0.995 0.971 0.974 0.996 0.976 0.979 0.998
RANKED (R+ S) 0.963 0.967 0.995 0.969 0.973 0.996 0.974 0.978 0.997 0.979 0.982 0.998 0.983 0.986 0.999

E
dg

e

c ≥ 0.17 c ≥ 0.33 c ≥ 0.5 c ≥ 0.67 c ≥ 0.83
Method ODS OIS AP ODS OIS AP ODS OIS AP ODS OIS AP ODS OIS AP

RANKED (R) 0.951 0.953 0.962 0.957 0.959 0.968 0.961 0.964 0.974 0.966 0.968 0.978 0.979 0.98 0.989
RANKED (R+ S) 0.962 0.965 0.973 0.969 0.972 0.980 0.974 0.977 0.985 0.979 0.981 0.989 0.989 0.989 0.996

Table S3. Uncertainty-aware results for Multi-cue dataset. Also, c represents the certainty map mentioned in Algorithm 1. For boundary
part, While case c ≥ 0.2 contains all ground-truth edges in all labels, case c = 1.0 contains only ground-truth edges that are labeled in all
labels. Similarly, c ≥ 0.17 contains all ground-truth edges in all labels for the edge part. Thresholds are determined based on the number
of labels for each RGB image. R: Ranking only. R+ S: Ranking & Sorting.



RGB R (RGB) HHA R (HHA) R (RGB-HHA) GT

Figure S3. Visual results on NYUD-v2 dataset. All outputs are obtained after the post-processing step. R: Ranking, Red: OIS scores.



RGB GT R R + S

Figure S4. Visual results on BSDS dataset. All outputs are obtained after the post-processing step. R: Ranking, R + S: Ranking & Sorting,
Red: OIS scores.



RGB GT R R + S

(a) Boundary

RGB GT R R + S

(b) Edge

Figure S5. Visual results on Multi-cue dataset. All outputs are obtained after the post-processing step. R: Ranking, R + S: Ranking &
Sorting, Red: OIS scores.



Figure S6. The Precision-Recall curve on BSDS dataset. MS rep-
resents multi-scale results.
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