
Projector M s/step MMB SEEDI MMEP AvgN

Linear 256 3.04 67.1 65.1 1556.5 70.0

Resampler

64 1.69 65.9 58.9 1394.7 64.8
144 2.28 66.0 57.0 1389.6 64.2
256 3.12 67.1 59.9 1489.6 67.2
400 4.27 67.7 61.5 1502.5 68.1

C-Abstractor

64 1.65 69.2 62.9 1528.1 69.5
144 2.23 69.2 64.2 1568.2 70.6
256 3.07 70.2 65.3 1586.8 71.6
400 4.15 70.8 65.5 1615.0 72.3

Table 8. Detailed scores of projectors by the number of visual to-
kens (M ). s/step indicates the time spent to perform one step in
pre-training.

A. Efficiency of MLLMs
As described in Section 3 of the main text, the efficiency
of MLLMs is predominantly affected not by the efficiency
of the vision model or projector, but by the number of vi-
sual tokens (i.e., the number of output tokens of the projec-
tor). Table 8 demonstrates this description, complementing
Fig. 1. Notably, while the resampler has substantially larger
parameters than linear (105M vs. 4M parameters), MLLM
with resampler with M = 144 is more efficient than MLLM
with linear (M = 256), as shown by lower step times (2.28
vs. 3.04). Our C-Abstractor, adhering to our design princi-
ples of flexibility and locality preservation, stands out as a
Pareto-front model compared to both resampler and linear.

B. Details on Projectors
In this section, we provide further ablations and descriptions
for design choices of individual projectors.

B.1. Linear Projector
In the recent study, LLaVA (v1.5) [33] utilizes a 2-layer
MLP instead of a single linear projection for enhancing the
vision-language connector’s representation power. This ap-
proach led to an investigation of how varying the number of
MLP layers impacts overall performance. As shown in Ta-
ble 9, the 2-layer MLP-based projector marginally improves
the overall performance compared to the linear projector.
However, we observe a slight performance drop when fur-
ther increasing the number of MLP layers (i.e., 6-layer
MLP). We note that our C-Abstractor and D-Abstractor
achieve better or comparable benchmark scores while using
fewer visual tokens, indicating our projectors’ superiority
regarding the balance of efficiency and performance.

B.2. Resampler
As described in the main text, our design focuses on two
principles: 1) flexibility in visual token counts, which is the

Architectures MMB SEEDI MMEP AvgN

Linear 67.1 65.1 1556.5 70.0
2-layer MLP 68.3 64.5 1557.2 70.2
6-layer MLP 68.5 63.5 1509.2 69.1

Resampler 66.0 57.0 1389.6 64.2
Resamplerw/ pos-emb 65.9 58.0 1384.7 64.4

ResNet (C-Abstractor) 69.2 64.2 1568.2 70.6
ConvNext 66.2 61.9 1525.4 68.1
StandardConv 67.4 57.1 1409.7 65.0

Deformable (D-Abstractor) 68.6 63.2 1548.3 69.7
Deformablew/o v-pooled Q 68.4 63.1 1521.7 69.2
Deformablew/o M-RP 68.5 62.9 1497.0 68.7

Table 9. Ablations for various architectural design choices in each
projector. We use 144 visual tokens (M=144) for all architectures
except for Linear and MLPs (M=256) due to their inflexibility.

key factor to the efficiency of MLLM, and 2) preservation
of local context, which is critical for spatial understand-
ing. Our first try is augmenting visual features with posi-
tional embeddings in the resampler framework, but it does
not yield notable improvements (See Resamplerw/ pos-emb in
Table 9). This leads us to design two novel projectors, C-
Abstractor and D-Abstractor.

B.3. C-Abstractor
Under our design principles on flexibility and locality, we
introduce convolution layers and adaptive average pooling
into the projector. The overall architecture is illustrated in
Fig. 4. We compare three convolution blocks: 1) ResNet
bottleneck block [51] with squeeze-excitation [19], 2) Con-
vNext block [37], and 3) a standard convolution block (3⇥3
convolution layer). Table 9 shows ResNet block outper-
forms ConvNext and standard convolution (StandardConv)
blocks. Hence, we employ ResNet block for C-Abstractor.
While further architectural variations are explorable under
the proposed design principles, we leave them for future in-
vestigation.

B.4. D-Abstractor
We first describe how deformable attention [67] works in
D-Abstractor. The core components of deformable attention
include (i) 2-D reference points p, (ii) 2-D sampling offsets
�o, and (iii) attention weights A. For individual learnable
queries z, the feature aggregation from the visual feature
map Xfeat is formulated by3:

zl+1 =
KX

k=1

Al
k ·Xfeat(p+�olk), (2)

where K is the number of sampling offsets per reference
point, and l is the index of the attention layer. All the ref-

3We recommend reading [67] for more details.



Ablated setting Default value Changed value MMB SEEDI MMEP MME AvgN LLaVAW

(Default) Honeybee with short training schedule 69.2 64.2 1568.2 1860.7 70.6 64.5

(i) Image indicator 7 3 67.4 62.5 1543.4 1809.5 69.0 60.5

(ii) Visual feature layer Second-last Last 69.2 63.7 1566.1 1839.3 70.4 62.1

(iii) LLM Vicuna-v1.5 LLaMA-2-chat 70.0 63.6 1551.7 1822.0 70.4 62.8

(iv) LLM tuning Full LoRA (r = 64) 35.0 48.9 1016.1 1156.1 44.9 59.2
LoRA (r = 256) 47.3 49.9 959.1 1217.3 48.4 64.0

(v) Pre-training steps 50k 200k 69.1 63.8 1586.6 1855.2 70.7 66.4

(vi) Instruction tuning steps 4k 10k 69.3 64.3 1586.8 1868.6 71.0 66.6
16k 70.9 63.8 1550.6 1856.7 70.7 66.0

Table 10. Additional recipes. The default value indicates the choice used in our default ablation setting with the short training schedule.

Configuration Pre-training Instruction Tuning

Trainable modules Abstractor Abstractor, LLM
Batch size 256 128
Learning rate 3e-4 2e-5
Minimum LR 1e-5 1e-6
LR schedule Cosine decay
Warmup steps 2000 150
Training steps 200k 10k
Weight decay 0.01 1e-4
Optimizer AdamW
Optimizer HPs �1 = 0.9,�2 = 0.98, ✏ = 1e� 6
Gradient clipping 1.0

Table 11. Training hyperparameters. HP and LR indicate hyper-
parameter and learning rate, respectively. Note that we use LR of
1e-4 for D-Abstractor.

erence points, sampling offsets, and attention weights are
obtained via linear projection over the learnable queries z;
that is, they are all learnable values. The introduction of ref-
erence points and sampling offsets for learnable queries al-
lows locality modeling by enabling the collection of fea-
tures near reference points via the sampling offsets.

On top of the deformable attention, we additionally
present two techniques to improve local context model-
ing: 1) learnable query initialization through adaptive av-
erage pooling to the visual feature map instead of random
initialization (v-pooled Q), and 2) a manual initialization
of reference points uniformly distributing on visual fea-
ture maps instead of centralized initialization (M-RP). With
these techniques, we can make reference points cover the
whole region of an image, which results in offering more
benefits in preserving local context with fine-grained infor-
mation for a given image. The results in Table 9 demonstrate
that two techniques provide overall performance improve-
ments of MLLMs.

Task Dataset Ratio Task Dataset Ratio

VQA (Open) VQAv2 10.3% REC RefCOCO 10.3%
GQA 10.3% RefCOCO+ 10.3%
OCRVQA 5.1% RefCOCOg 10.3%
VSR 2.6% VG 5.1%

VQA (MC) ScienceQA 5.1% Instruction LLaVA150K 10.3%
A-OKVQA 10.3% ShareGPT 2.6%

Captioning COYO100M 7.7%

Table 12. Sampling ratio during instruction tuning.

C. Implementation Details
The detailed hyperparameters (HPs) are summarized in Ta-
ble 11. Additionally, we utilize total six blocks in both C-
Abstractor and D-Abstractor (i.e., L = 3 for C-Abstractor
and L = 6 for D-Abstractor in Fig. 4). We use a single node
with A100 80GB ⇥ 8, employing deepspeed zero-2 [47]
and flash-attention v2 [12] for all experiments, except for
the pre-training of long schedule where we use multi-node
setups.
Sampling ratio for datasets. As described in Section 4,
balancing the wide range of datasets is important to train
precise MLLMs. To maximize the learning of diverse
knowledge from multifaceted datasets, we manually deter-
mine the sampling ratios of these datasets during training.
In pre-training, COYO100M and BlipCapFilt are used in
a 1:1 ratio. For instruction tuning, the specific sampling
ratios of each dataset, determined through short schedule
ablations, are detailed in Table 12. Notably, datasets such
as VSR, ShareGPT, ScienceQA, OCRVQA, and Visual
Genome (VG) have lower sampling ratios. The restricted
scale of ShareGPT, VSR, and ScienceQA is due to their
small dataset sizes, limited to a maximum of 3 epochs in
short schedule criteria. On the other hand, the sampling ra-
tio for OCRVQA and VG is set to 5.1%, derived empirically
from ablation experiments. The exclusion of BlipCapFilt in
instruction tuning stems from computational resource con-



Task Dataset Template

Captioning BlipCapFilt AI: {caption}

COYO100M AI: {caption}

VQA (Open) VQAv2 Human: Answer the question using a single word or phrase. {question} AI: {answer}

GQA Human: Answer the question using a single word or phrase. {question} AI: {answer}

OCRVQA Human: Answer the question using a single word or phrase. {question} AI: {answer}

VSR Human: Answer the question using a single word or phrase. {question} Please answer yes or no. AI: {answer}

VQA (MC) ScienceQA Human: Answer with the option’s letter from the given choices directly. {question} Context: {context} There are several
options: {option} AI: {answer}

A-OKVQA Human: Answer with the option’s letter from the given choices directly. {question} There are several options: {option}
AI: {answer}

REC RefCOCO Human: Provide the bounding box coordinate of the region this sentence describes: {phrase} AI: {bbox}

Human: Provide a description for the region {bbox}, utilizing positional words to refer to objects. Example: ‘The large
blue teddy bear next to the red balloon’ AI: {phrase}

RefCOCO+ Human: Provide the bounding box coordinate of the region this sentence describes: {phrase} AI: {bbox}

Human: Provide a description for the region {bbox}, focusing on the appearance of objects without using positional words.
Example: ‘The large blue teddy bear holding a red balloon.’ AI: {phrase}

RefCOCOg Human: Provide the bounding box coordinate of the region this sentence describes: {phrase} AI: {bbox}

Human: Provide a description for the region {bbox}, using detailed and descriptive expressions to refer to objects. Exam-
ple: ‘The large blue teddy bear holding a red balloon with a joyful expression.’ AI: {phrase}

Visual Genome Human: Provide the bounding box coordinate of the region this sentence describes: {phrase} AI: {bbox}

Human: Provide a short description for this region: {bbox} AI: {phrase}

Instruction LLaVA150k Human: {instruction} AI: {response}

ShareGPT Human: {instruction} AI: {response}

Table 13. Templates for individual dataset. We develop the templates based on LLaVA (v1.5) [33]. {*} is replaced depending on dataset
examples where red-colored one means a target output. Note that bbox is expressed as normalized coordinates [xmin, ymin, xmax, ymax].

Human: Answer the question using a single 
word or phrase. What’s on the beach?
AI: pillow

Single-turn

Human: Answer the question using a single 
word or phrase. What’s on the beach?
AI: pillow
Human: Answer the question using a single 
word or phrase. What is on the beach?
AI: pillow
Human: Answer the question using a single 
word or phrase. What kind of furniture is to 
the right of the table?
AI: dresser

Multi-turn

Human: Answer the question using a single 
word or phrase. What’s on the beach?
AI: pillow
Human: Answer the question using a single 
word or phrase. What kind of furniture is to 
the right of the table?
AI: dresser

Multi-turn w/ de-duplication

multi-turn

de-duplication

Figure 5. The construction process of a multi-turn example with de-duplication. This example is sampled from the GQA [20] dataset.

straints, not from ablation results; we observe that including
it does not notably affect the average performance.

D. Additional Recipes
Table 10 presents additional ablation studies for our design
choices. (i) There are several studies employing image indi-
cator tokens [2, 54], yet they do not demonstrate the effec-
tiveness of the indicator tokens. Our experiments show that
omitting indicator tokens improves performance. (ii) We ex-

periment with visual feature sources from the CLIP vision
model [46]. The results show that utilizing features from
the second-last layer rather than the last layer yields bet-
ter performance [27]. (iii) LLaMA-2-chat and Vicuna-v1.5
show similar results, with Vicuna marginally outperform-
ing, thus we use Vicuna. (iv) We applied LoRA to every
query and value layer of attention following the original pa-
per [18], yet found full tuning of LLM to be superior. While
there may be ways to better utilize LoRA, such as increas-



Q: What item is hanging on the wall 
behind the person in the image?
A. Picture B. Clock   
C. Shelf        D. Cabinet

Q: What color are the socks of the player 
nearest to the ball in the image?
A. Yellow and blue   B. Red
C. Black and white   D. Blue and yellow

Q: In the image, where is the person
surfing?
A. On a surfboard riding a large wave
B. In a group of surfers riding wave
C. Close to the shore
D. In the middle of the ocean

Figure 6. Examples of SEED-Bench. The examples require in-depth visual understanding; we highlight the regions (yellow boxes) that
we need to focus on to get the correct answer (red-colored option).

(a) Code reasoning task

(b) Numerical calculation task

(c) Text translation task

Q: The image shows a python code. Is 
the output of the code ‘Hello’? Please 
answer yes or no.                       A. Yes

Q: The image shows a python code. Is 
the output of the code ‘a dog’? 
Please answer yes or no.            A. No

Q: The image shows a python code. Is 
the output of the code ‘12’? Please 
answer yes or no.                       A. Yes

Q: The image shows a python code. Is 
the output of the code ‘2’? Please 
answer yes or no.                         A. No

Q:Is the answer to the arithmetic 
question in the image 1511? Please 
answer yes or no.                     A. No

Q:Is the answer to the arithmetic 
question in the image 17? Please 
answer yes or no.                  A. No

Q:Is the answer to the arithmetic 
question in the image 65? Please 
answer yes or no.                  A. Yes

Q:Is the answer to the arithmetic 
question in the image 33? Please 
answer yes or no.                 A. Yes

Q:Is it appropriate to translate the 
Chinese in the image into English 
‘classic taste’ in the picture? Please 
answer yes or no.                    A. Yes

Q:Is it appropriate to translate the 
Chinese in the image into English ‘a 
delicious dinner’ in the picture? 
Please answer yes or no.        A. Yes

Q:Is it appropriate to translate the 
Chinese in the image into English 
‘cold weather’ in the picture? Please 
answer yes or no.                         A. No

Q:Is it appropriate to translate the 
Chinese in the image into English ‘run 
very slow’ in the picture? Please 
answer yes or no.                        A. No

Figure 7. Examples of MME with cognition taks.

ing its application scope or rank, we did not explore these
further in this study. Experiments (v) and (vi) pertain to the
long training schedule employed for our final model (Ta-
ble 6). (v) In pre-training, we freeze the LLM and train only
the projector. Here, extending pre-training, a feasible op-
tion with more computational resources, is beneficial, albeit
with marginal improvements. (vi) When increasing instruc-
tion tuning steps, a broader consideration is necessary as
continued LLM training can diminish its pre-trained knowl-
edge and capabilities. Our experiments reveal that exces-
sively long training is counterproductive, with around 10k
training iterations being the most effective.

E. Details on Templates
Templates. Detailed templates for individual datasets are
presented in Table 13. For captioning tasks, MLLMs are en-
couraged to generate directly output captions without any
instructional phrase as the standard captioning task. For
VQA and REC tasks, we adopt fine-grained templates to fa-
vorably adapt LLM’s outputs for individual datasets. For the
VSR dataset, we rephrase the declarative captions into ques-
tions to suit a VQA context. For instance, a caption “The
cat is inside the refrigerator” marked as False is converted
into “Is the cat inside the refrigerator?” with the answer No.
Finally, for the instruction task, we use the original instruc-



Perception Cognition

Model Existence Count Position Color Poster Celebrity Scene Landmark Artwork OCR Sum Commonsense
reasoning

Numerical
calculation

Text
translation

Code
reasoning Sum Total

C-7B 185.0 145.0 161.7 180.0 166.7 152.4 157.3 174.5 129.3 132.5 1584.2 112.1 37.5 100.0 57.5 307.1 1891.3
D-7B 175.0 153.3 143.3 175.0 155.4 148.2 153.3 163.3 129.8 147.5 1544.1 111.4 47.5 72.5 60.0 291.4 1835.5
C-13B 185.0 141.7 173.3 170.0 178.2 172.4 160.3 173.5 142.5 132.5 1629.3 127.1 47.5 80.0 60.0 314.6 1944.0
D-13B 195.0 175.0 146.7 168.3 168.0 164.7 156.5 174.5 131.0 152.5 1632.2 130.0 62.5 82.5 42.5 317.5 1949.7

(a) MME scores. Maximum scores are 200 for each subcategory, and 2000, 800, and 2800 for perception, cognition, and total, respectively.

Model Scene
understanding

Instance
identity

Instance
attributes

Instance
location

Instances
counting

Spatial
relation

Instance
interaction

Visual
reasoning

Text
understanding Total

C-7B 73.4 67.8 64.6 59.8 55.6 48.4 73.2 74.9 41.2 64.5
D-7B 73.1 67.9 62.3 60.8 55.0 49.8 67.0 73.1 27.1 63.5
C-13B 75.4 74.0 68.1 65.5 59.2 54.2 71.1 79.5 38.8 68.2
D-13B 74.8 71.2 65.4 64.6 59.3 51.6 69.1 78.5 24.7 66.6

(b) SEEDI accuracies.

Model LR AR RR FP-S FP-C CP Total

C-7B 41.7 78.1 69.6 74.1 53.8 80.2 70.1
D-7B 44.2 75.1 73.0 73.1 58.6 81.2 70.8
C-13B 45.8 77.6 77.4 76.8 57.9 83.6 73.2
D-13B 45.0 75.6 81.7 76.4 62.1 82.9 73.5

(c) MMB accuracies. Abbreviations stand for LR: Logic Reasoning, AR: Attribute
Reasoning, RR: Relation Reasoning, FP-S: Fine-grained Perception (Single-instance),
FP-C: Fine-grained Perception (Cross-instance), CP: Coarse Perception.

Model Complex Conv Detail All

C-7B 84.6 50.3 55.1 67.1
D-7B 79.6 49.4 62.6 66.3
C-13B 82.5 72.9 66.7 75.7
D-13B 84.1 68.6 57.8 72.9

(d) LLaVAW scores.

Table 14. Detailed scores. C- and D- in Model column indicate C-Abstractor and D-Abstractor, respectively. 7B and 13B indicate LLM
size. For the input images, we use 224 resolution for 7B and 336 for 13B.

tions and responses rather than using templates.

Multi-turn with de-duplication. For data such as VQA
datasets where multiple input-target pairs exist for a single
image, we make conversation-like multi-turn examples by
simply concatenating the input-target pairs. Additionally,
we perform a de-duplication strategy which remains only
one from the duplicates (having the same target). The pro-
cess is illustrated in Fig. 5.

F. Benchmark Characteristics
Throughout this study, we observe specific characteristics in
benchmarks, particularly in SEED-Bench and MME with
cognition tasks (MME-cognition). SEED-Bench tends to
require fine-grained visual comprehension, while MME-
cognition is highly text-oriented, resulting in substantial de-
pendency on the capabilities of LLMs. In this section, we
investigate these distinctive benchmark characteristics.

SEED-Bench. We present examples of SEED-Bench, in
Fig. 6, to show one of the major characteristics of the bench-
mark; we observe that the examples frequently require fine-
grained visual understanding, e.g., details from small re-
gions. Such characteristics suggest that using large images

or more visual tokens is critical in achieving higher perfor-
mance in this benchmark. Notably, in Table 6, Honeybee
achieves competitive performance over comparative mod-
els even with smaller images or fewer visual tokens.

MME-cognition. We present examples of MME-
cognition in Fig. 7. Notably, three out of four cognition
tasks are text-oriented reasoning tasks, such as code
reasoning, numerical calculation, and text translation.
Consequently, the performance of these cognition tasks is
predominantly influenced by which LLM is used, rather
than the visual comprehension capabilities of MLLM.
Furthermore, our analysis reveals a distinct bias in the text
translation task towards Chinese-English translation. While
only four examples are shown in Fig. 7, all instances of
text translation tasks are observed to be Chinese-English
translations. Considering such characteristics, we prioritize
the MME with perception tasks (MMEP) over cognition
tasks for model comparisons.

G. Additional Results
G.1. Detailed Benchmark Scores

We report the detailed scores of our final models for all cat-
egories in MME, MMB, SEEDI, and LLaVAW in Table 14.



Model Subject Context Modality Grade Average
NAT SOC LAN TXT IMG NO G1-6 G7-12

Human [39] 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40
GPT-3.5 [39] 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.17
GPT-4 [34] 84.06 73.45 87.36 81.87 70.75 90.73 84.69 79.10 82.69

Specialist Models
LLaMA-Adapter [62] 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05 85.19
MM-CoT [64] 95.91 82.00 90.82 95.26 88.80 92.89 92.44 90.31 91.68
LLaVA [34] 90.36 95.95 88.00 89.49 88.00 90.66 90.93 90.90 90.92
LLaVA+GPT-4 (judge) [34] 91.56 96.74 91.09 90.62 88.99 93.52 92.73 92.16 92.53

Generalist Models
Honeybee (M=256) 93.12 96.63 90.55 92.52 91.77 92.26 93.72 92.22 93.19
Honeybee (M=576) 95.20 96.29 91.18 94.48 93.75 93.17 95.04 93.21 94.39

Table 15. Evaluation results on the Science QA test split. Question classes: NAT = natural science, SOC = social science, LAN =
language science, TXT = text context, IMG = image context, NO = no context, G1-6 = grades 1-6, G7-12 = grades 7-12. Despite specialist
models being tailored explicitly for the ScienceQA benchmark, e.g., further fine-tuning solely on ScienceQA, Honeybee achieves state-of-
the-art scores under a generalist approach. We highlight the best results and second-best results in bold and underline.

Figure 8. Comparison between Honeybee variants and current
state-of-the-art methods. AvgN denotes the normalized average
score of MMB, MMEP, and SEEDI.

G.2. Pushing the Limits

Table 7 in the main text shows the performance of Honeybee
with the increased number of visual tokens, matching them
to the linear projector. Here, we further provide the compar-
ison between the Honeybee variants and the current state-
of-the-art methods, namely Qwen-VL-Chat [2] and LLaVA-
1.5 [33], in Fig. 8. This figure highlights the efficiency and
effectiveness of the proposed Honeybee.

G.3. Science QA

The Science QA dataset [39] is specifically designed to
evaluate the broadness of domain knowledge and multi-
hop reasoning skills of AI systems, which is essential
for MLLMs to perform a wider range of tasks requiring
more complex reasoning. Thus, in this section, we addi-
tionally provide the evaluation results of the Science QA
benchmark. From Table 15, recent MLLMs, i.e., LLaMA-
adapter [62], MM-CoT [64], and LLaVA [34], show re-
markable performance in this benchmark via further fine-

MM-Vet MMMU POPE
Approaches using 7B LLM
LLaVA (v1) 23.8 - 66.5
MiniGPT-4 22.1 - -
LLaMA-AdapterV2 31.4 29.8 -
mPLUG-Owl - - 67.4
InstructBLIP 26.2 - -
Qwen-VL-Chat - 35.9 -
LLaVA-1.5 30.5 - 85.9
Honeybee (C-7B-144M) 34.9 35.3 83.2
Honeybee (C-7B-256M) 35.6 36.4 84.3

Approaches using 13B LLM
MiniGPT-4 24.4 26.8 74.5
BLIP-2 22.4 35.4 85.3
InstructBLIP 25.6 35.7 83.8
LLaVA-1.5 35.4 36.4 85.9
Honeybee (C-13B-256M) 38.1 37.3 85.5
Honeybee (C-13B-576M) 42.2 36.2 85.6

Table 16. Additional benchmark comparison. Numbers are col-
lected from each paper and official leaderboard, selecting the best
results for each method when multiple exist.

tuning on the Science QA dataset; we refer to these fine-
tuned models as Specialist Models in Table 15. Espe-
cially, in LLaVA+GPT-4 (judge), they achieved state-of-the-
art scores by utilizing the GPT-4 [44] as a judge; when-
ever GPT-4 and LLaVA produce different answers, they
prompt GPT-4 again, asking it to provide a final answer
based on the question and two outcomes. Remarkably,
Honeybee, with C-Abstractor and vicuna-13B, outperforms
the LLaVA+GPT-4 (judge) and achieves new state-of-the-art
scores in this benchmark without the assist of GPT-4 or the
task-specific fine-tuning process. These results highlight the
effectiveness of our contributions: 1) architectural improve-
ment of the projector and 2) thoroughly explored training
recipe.



Figure 9. Visualization of attention maps. (Left) the input image, (Middle) the attention map from the resampler, and (Right) the
attention map from D-Abstractor. Our locality-aware projector (D-Abstractor) effectively preserves local contexts, while the resampler
extracts visual information mainly from a few regions and loses some details.

G.4. Additional Benchmark Results
In addition to four benchmarks used in the main pa-
per, we perform further evaluation using three additional
benchmarks—1) MM-Vet [58] and MMMU [60] for vi-
sual understanding capability evaluation, and 2) POPE [30]
for evaluation of object hallucination. In Table 16, sim-
ilar to the experimental results in the main text, Honey-
bee shows superior comprehensive visual understanding on
MM-Vet and MMMU benchmarks. On the other hand, in
the hallucination aspect, the performance of 7B-scale Hon-
eybee slightly falls short compared to LLaVA-1.5. However,
when using larger images (336 resolution) with 13B LLM,
it achieves competitive performance, suggesting the impor-
tance of higher visual understanding and reasoning to tackle
hallucination issue.

H. Qualitative Analysis
H.1. Attention Comparison between Resampler

and D-Abstractor
As discussed in Section 3.2.1, the vanilla abstractor
(i.e., resampler) tends to primarily focus on salient re-
gions, whereas our locality-enhanced abstractor (i.e., D-
Abstractor) is designed to preserve local contexts effec-
tively. To further validate this, we examined attention maps
from both the resampler and the D-Abstractor for their ev-
ery learnable query (M=144). From Fig. 9, we observe that
queries of the resampler only attend to specific salient areas,
suggesting the potential loss of detailed information. On
the other hand, in the case of D-Abstractor, each learnable
query locally abstracts visual features across the whole fea-
ture map, which provides fine-grained and comprehensive

information about the image. This result indicates that our
proposed projectors benefit in improving the performance
of spatial understanding tasks that require to capture diverse
relationships and objects in an image.

H.2. Qualitative Examples
In Fig. 10, we present generation results for various user
instructions using samples of OwlEval [54]. To verify the
importance of instruction-following data for human prefer-
ence, we report both results generated from two different
models: 1) a model trained without instruction-following
data such as LLaVA [34] and ShareGPT [10], called
Honeybee w/o Inst. (D9 in Table 4), and 2) a model trained
with all available data, including the instruction-following
data, called Honeybee w/ Inst. (D1 in Table 4). From Fig. 10,
while the Honeybee w/o Inst. captures objects included in
given images exactly, the answers tend to be short or not
follow the instructions. In contrast, Honeybee w/ Inst. accu-
rately responds to user instructions and generates detailed
answers preferred by humans.



User

Honeybee w/o Inst.

Honeybee w/ Inst.

Why would a person find this image funny?

A person might find this image funny because it features a squirrel, which is a small, cute, and 
often mischievous creature, holding a camera and seemingly posing for a photo. The idea of a 
rodent holding human-like objects, such as a Camera, can be amusing and whimsical. 
Furthermore, the squiggly-eyed squirming squid expression adds to the humor by making the 
scene even more exaggerated and light-hearted. People often find anthropomorphic 
representations of animals and unexpected situations like this entertaining.

Squirrel with camera

User

Honeybee w/o Inst.

Honeybee w/ Inst.

What is unusual about this image?

In the image, a man is ironing clothes while standing on the back of a car parked on a street. 
This is unusual because iron is not typically used in outdoor settings, and it is even more 
uncommon to see someone iron clothes on top of an automobile. Furthermore, the presence of 
the man iron and the car with its hood open create a unique and unexpected scene that captures 
the attention of passersby, as they may not commonly witness such an unusual event.

Man drying clothes on car

User

Honeybee w/o Inst.

Honeybee w/ Inst.

How many championship rings did the player on the left win in his career?

The player on the left, wearing a yellow jersey, is Kobe Bryant. Kobi Bryant won five 
championship rings in his career, all of which were won with the Los Angeles Lakers.

5

User

Honeybee w/o Inst.

Honeybee w/ Inst.

Is this image common in real world?

The image depicts an unusual and surreal scene of a cactus surrounded by ice cubes. This is 
not a common sight in the real world, as cacti and ice are generally found in different 
environments and climates. Cacti typically grow in hot and arid desert regions, while ice is 
formed in colder temperatures and environments. The combination of the two elements in this 
image is likely a result of photo manipulation or staging, creating an interesting and 
unconventional visual effect.

No

User

Honeybee w/o Inst.

Honeybee w/ Inst.

Write a conversation between the two animals.

In the image, a cat is sitting on the back of a dog that is lying in the snow. It is an unusual and 
amusing scene. If the cat and the dog could communicate, they might have a conversation 
something like this:
Cat: purrs "Hey there, big guy. Thanks for letting me ride you."
Dog: wag wags "You're welcome, feline friend. I love having you on my back."

Cat on dog

User

Honeybee w/o Inst.

Honeybee w/ Inst.

Help me write an advertisement for this.

Introducing our unique and whimsical bird-shaped table lamp. This charming piece features a 
beautifully crafted bird with a large, long beak, perched on one foot and holding a light bulb in 
its beak. The lamp's design adds a touch of creativity and playfulness to any space, making it 
an ideal addition to a living room, bedroom, or office. With its eye-catching appearance, this 
bird lamp will spark conversation and bring a sense of joy and charm to your room. Place it on 
a table or desk to create a cozy ambiance with its warm glow. Order yours today!

Bring home a piece of art with this gorgeous golden bird lamp

Figure 10. Qualitative examples with various user inputs. w/ Inst. and w/o Inst. indicate results from models trained with or without
instruction-following data, i.e., LLaVA [34] and ShareGPT [10], respectively. The example images are selected from OwlEval [54].
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