
Supplemental Material
PEGASUS: Personalized Generative 3D Avatars with Composable Attributes

Hyunsoo Cha Byungjun Kim Hanbyul Joo
Seoul National University

243stephen@snu.ac.kr byungjun.kim@snu.ac.kr hbjoo@snu.ac.kr

https://snuvclab.github.io/pegasus/

A. Synthetic DB Generation

In this section, we provide further details of our synthetic
database (DB) generation via part swapping, introduced in
Sec. 4.2 of our main manuscript.
Hair. We empirically find that removing the hair of the target
subject is necessary before swapping the hair from the at-
tribute DB. To create a bald head representation of the target
individual, we utilize the Stable Diffusion [13], employing
auto-generated mask images for this purpose. To generate
the hair mask, we utilize an off-the-shelf face parsing net-
work [17, 21]. We dilate the mask image using a kernel of
size 20 from OpenCV [1]. Then, to generate an image of the
target person with a bald head, we employ Stable Diffusion
in conjunction with ControlNet [18]. The prompt to generate
the bald head is “bald, clean skin, smooth bald, small head,
albedo.” The negative prompt is “hair, wrinkles, shadow,
light reflection, tattoo, sideburns, facial hair, cartoonish, ab-
stract interpretations, hat, head coverings.” The examples are
shown in Fig. 1.
Other Attributes. Our goal is to synthesize the shape and
appearance of the facial attribute from the attribute DB into
the target individual as seamlessly as possible. To achieve
this, we first render the avatar from an attribute DB into the
same view, shape, and facial expressions as the target frame
of the target individual’s video, as described in Sec. 4.2 in
our main manuscript. Subsequently, we acquire the mask
of the rendered facial attribute by employing a face parsing
network [17, 21] and then slightly enlarge it by applying the
dilate function in OpenCV. We also perform the segmenta-
tion for the target individual’s image to acquire the mask of
the target facial attribute by utilizing the face parsing net-
work [17, 21], where the target facial part is subsequently
“removed” via inpainting by employing the Fast Marching
Method [15]. This process can be considered as a similar pro-
cess of “bald head synthesis” before integrating the desired
facial part from the attribute source. Finally, we seamlessly
integrate the facial attribute from the attribute avatar into
the target individual using Poisson blending [11]. Examples
of nose and mouth synthesis employing this technique are

Figure 1. Stable Diffusion Inpainting. We leverage Stable Dif-
fusion [13] and ControlNet [18] to remove the target’s hair and
make it bald, in order to synthesize different hair. The automat-
ically generated mask images represent the area designated for
inpainting.

Figure 2. Poisson Blending Inpainting. We use Poisson blend-
ing [11] to synthesize the facial attribute and the target’s face.

illustrated in Fig. 2.
Tracking and Masking. To extract FLAME parameters

https://snuvclab.github.io/pegasus/

from images, along with their corresponding camera pa-
rameters, we utilize the DECA model [3]. When FLAME
parameters are directly extracted using the DECA model, we
notice that the head pose estimation is noisy and jittery, par-
ticularly in the frames where the eyes in the original images
are blinking. To improve the FLAME parameter estimation
quality, following the similar process of PointAvatar [20], we
apply an optimization procedure to align the 2D projection
of FLAME’s facial landmarks with the detection outputs of
an off-the-shelf 2D facial landmark detector [2]. This opti-
mization process is based on the assumption that the quality
of the 2D landmark detection is more precise. We minimize
the point-wise distance between the landmark obtained from
FLAME and the 2D facial landmark to optimize the shape,
pose, and camera parameters. Different from PointAvatar’s
approach, instead of using a singular translation vector for
each video, we employ a unique vector for every image
frame in scenarios involving in-the-wild video tracking.

To create the foreground mask image, we leverage an
off-the-shelf background matting network [5] to obtain the
portrait mask images from the videos. We use the face pars-
ing network [17, 21] to obtain part segmentations of the faces
and leverage SegmentAnything Model [7, 9] for segmenting
head accessories.

B. Postprocessing of Zero-Shot Transfer
We provide further details of the Eq. (13) in our main

manuscript, which is the process of combining the subsets
of point clouds from both avatars. In short, the zero-shot
process is performed via three steps: (1) naive composition
after segmentation by introducing additional point clouds
for the missing region; (2) optimization by aligning facial
landmarks for better alignment; and (3) color blending for
the added points for seamless outputs.
Obtaining the Additional Part from the Source Human.
We use the estimated segmentation masks of the face at-
tribute �� and �th that can be controlled via latent code z
to select the target human’s point cloud except for the fa-
cial attribute �th = 0 and source human’s point cloud that
includes the facial attribute �� = 1:

Pnaive = fxd;i� g�i�=1 [fx
d;i
th g�ith=0 (1)

When we remove the facial attribute from the target human
and bring in the facial attribute from the source human, it
creates an empty space between the two point clouds. To
fill this missing region, as shown in Fig. 4a, we bring in
additional parts from the source human. Formally, this can
be represented as follows:

Pnaive w/ add = Pnaive [fxd;i� g�i�;add=1 (2)

To create the additional segmentation mask �i�; add, we bor-
row the knowledge from the FLAME [8] by leveraging

Figure 3. Zero-Shot Landmarks for Optimization. The red dot
represents our personalized generative model’s k-nearest neigh-
bor of 3D Landmarks from FLAME keypoints, and the blue dot
represents the target’s k-nearest neighbor of 3D Landmarks from
FLAME keypoints.

(a) Before Optimize. (b) After Optimize. (c) Color Blending.

Figure 4. Zero-Shot Optimization Steps. The red box represents
the additional part to fill the empty space. Through zero-shot mod-
eling, we generate an avatar with a high-quality and reasonable
appearance in three stages of post-processing in Sec. B.

k-nearest neighbor N . Nk(P1; P2) denotes the k-nearest
neighbors in P2 for each point in P1. arg minNk(P1; P2)
represents the indices of the k-nearest neighbors from points
in P1 to points in P2 [12]. We omit the subscript k when
k = 1.

Note that fxd;i� g�i�;add=1 denotes the additional point
clouds from the source human to fill the gaps between the
source human and target human because of the exception
of target human’s attribute, as shown in the red box of
Fig. 4a. To create �i�;add, We exclude the vertices from the
FLAME vertices xFLAME

th that are not associated with the
additional part by using �th and the back of the head part
of the FLAME that we designate. We denote the mask cue
for obtaining FLAME corresponding to the additional part
as �FLAME

th;add .

xFLAME
th;add = fxFLAME

th g�FLAME
th;add

(3)

We applyN to xd� and xFLAME
th;add to obtain the nearest neighbor

of source human. To create the additional part only, we use
(1� ��) except for source human’s attribute.

��;add = (1� ��) � arg minNk(xFLAME
th;add ;x

d
�); (4)

where � represents the Hadamard product. We use k =
2000 to generate the additional point clouds as described in
Fig. 4a.
Optimization Step. After the naive composition, there is
still a gap between the source human’s face attribute and
target human’s other parts because of the misalignment of

the subject-speci�c FLAME canonical space, as shown in
Fig. 4a. To solve this issue, we apply the optimization pro-
cess to minimize the distance between thesource human
andtarget human. To obtain the landmark points, we apply
thek-nearest neighbor function between the landmarks of
deformed FLAME vertices [3] andxd as follows:

x landmarks= N (xFLAME landmarks; xd) (5)

We leverage the distance between thesource human's 3D
landmark points and thetarget human's 3D landmark points
as shown in Fig. 3.

d1 = kx landmarks
th � x landmarks

� k2
2 (6)

Furthermore, we calculate the squared distances between
points in the additionalsource humanpart, denoted as
f xd

� g� �; add=1 , and points in thetarget human, represented by
f xd

th g� th =0 , from thek-nearest neighbors. For simplicity,
the superscripti is omitted.

d2 = kN (f xd
� g� �; add=1 ; f xd

th g� th =0)k2
2 (7)

We optimize the learnable angle-axis rotation vectorR 2
R3 and translation vectort 2 R3 to minimize the distance
d = d1 + d2 by Adam optimizer [6]. Note that we apply
the rotation and translation vector at the subject-speci�c
FLAME-canonical space.

x fc
�; moved = R � f x fc

� g + t (8)

We obtain the movedsource human's point cloudxd
�; moved

from x fc
�; movedby Eq. (8). As a consequence, the optimized

point cloud is represented as follows:

Poptim = f xd
�; movedg� � � � �; add=1 [f xd

th g� th =0 (9)

The optimized rendering result is shown in Fig. 4b.
Blending Step.To generate a natural rendering of the addi-
tional part, denoted asf xd

� g� �; add=1 , we leverage the feature
information from thetarget humanusing thek-nearest neigh-
bor.

cd
add = arg min N (x th ; f xd

� g� �; add=1) � cd
th (10)

nd
add = arg min N (x th ; f xd

� g� �; add=1) � nd
th (11)

The RGB and normal of the additional part come from the
target human, so we obtain the naturally blended avatar
through the zero-shot model. The natural blended results
are shown in Fig. 4c.

Figure 5.Network Architecture of PEGASUS. In PEGASUS, the
latent codez serves as a condition for all the MLPs.

C. Implementation Details

Network Architecture In Fig. 5, we show the network ar-
chitecture of PEGASUS. Following PointAvatar [20], we
leverage ReLU activation function [10] for shading MLP,
and Softplus activation function for canonical and deforma-
tion MLP for every layer.Sigdenotes the sigmoid function in
Fig. 5. Different from PointAvatar, we use an additional layer
to output segmentation cues� in canonical MLP. Also, we
use two layers of MLP to create subject-speci�c canonical
offsetOgc! sc

Loss Functions.The total loss for PEGASUS is de�ned as
follows:

L = � rgbL rgb + � maskL mask+ � FLAMEL FLAME + � vggL vgg

+ � normalL normal+ � segL seg+ � z regL z reg

(12)

We leverage the loss functions from the facial implicit repre-
sentations from monocular inputs [19, 20] as follows:

L rgb = kc � cGTk (13)

L mask = kM � M GTk (14)

L vgg = kFvgg(c) � Fvgg(cGT)k (15)

L FLAME =
1
N

NX

i =1

(� ekEi � Êi k2

+ � pkPi � P̂i k2

+ � w kWi � Ŵi k2)

(16)

(a) 1-Stage (b) 2-Stages (c) 3-Stages (d) GT

Figure 6.Ablation: reconstruction by offsetsO. Our three-stage
canonical space framework creates reasonable and accurate recon-
struction.

Following PointAvatar,c andcGT denote the color of the
rendering images from PEGASUS and ground-truth color.
M denotes the mask from PEGASUS obtained bym pix =P

i � i T i . Fvgg(�) represent the features of pretrained VGG
network [4, 14]. E; P; andW are the pseudo ground truth
of thek-nearest neighbor vertices of the FLAME [8]. Note
that our method, PEGASUS, does not predict the shape
blendshapes basisS, directly using thek-nearest neighbor
vertices of the FLAME.

Given ground-truth object maskM GT
seg and the predicted

segmentation cues� d, the rendered color of the segmented
point cloud representsR(� d � xd). The segmentation loss is
de�ned as:

L seg = BCE(R(� d � xd); M GT
seg) (17)

BCErepresent the Binary Cross-Entropy loss.R is the alpha
composition rendering function. We leverage the alpha com-
position function of PyTorch3D [12] to render the predicted
segmentation cues.

We adopt the normal loss to encourage high-�delity ge-
ometry and texture as follows:

L normal = kn � ndk (18)

We generate the pseudo ground truth normaln from theV tp

and the avatar trained with a single identity of eachV db. We
apply the regularization of latent code to be close to zero.

L z reg = kzk (19)

Training Strategy We train PEGASUS in two stages. In the
�rst stage, we only use the target individual fromV tp for
training. In this way, the initial point cloud is deformed from
a sphere to have a reasonable face shape. In the second stage,
we continue training using all part-swapped videos fromV̂ tp

i .
We have empirically �nd that this two-stage training shows
more reliable training. In all of our experiments, we start the
second stage from the 10th epoch, using 1600 point clouds.

D. More Ablation Study

Multi-stage Canonical Spaces.In Fig. 6 and Tab. 3, our
multi-stage canonical space and point deformation method
outperforms the best metrics and quality compared to other

(a) Default Nose (b) Two Stages (c) Ours

Figure 7.Ablation: random sampling by offsetsO. Multi-stage
canonical spaces enhance disentangled nose generation.

(a) Without Normal Loss (b) With Normal Loss

Figure 8.Ablation: normal loss. The normal loss improves the
RGB and geometry quality of our model.

approaches. Notably, as an example of Fig. 6, the closest
high-quality reconstruction to the Ground Truth (GT) is
achieved by the three-stage approach.

Additionally, we randomly sample the nose latent codes
to utilize two and three-stage baselines in Fig. 7. Fig. 7
shows that the original architecture of PointAvatar fails to
disentangle the target attribute. Fig. 7 demonstrates that the
generic canonical space is necessary to generate disentangled
facial attributes from random sampling while preserving
individual identity.
Normal Loss.We show the advantage of our normal loss,
which is used for training the avatar model. In Fig. 8, the
result shows that the normal loss improves the RGB and
normal qualities, resulting in more realistic appearances.

E. Additional Experiments

Temporal Consistency.We employ the temporal consistent
metrics [16] to evaluate the preservation of identity across
generated image sequences. TL-ID denotes the temporally
local identity preservation, which evaluates the consistency
of image sequences locally, focusing on the pairs of adja-
cent frames. TG-ID represents the temporally global identity
preservation metric to measure the similarity across all pos-
sible pairs of video frames, including those that are not ad-

	. Synthetic DB Generation
	. Postprocessing of Zero-Shot Transfer
	. Implementation Details
	. More Ablation Study
	. Additional Experiments
	. More Results
	. Limitations

