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A. Synthetic DB Generation

In this section, we provide further details of our synthetic
database (DB) generation via part swapping, introduced in
Sec. 4.2 of our main manuscript.
Hair. We empirically find that removing the hair of the target
subject is necessary before swapping the hair from the at-
tribute DB. To create a bald head representation of the target
individual, we utilize the Stable Diffusion [13], employing
auto-generated mask images for this purpose. To generate
the hair mask, we utilize an off-the-shelf face parsing net-
work [17, 21]. We dilate the mask image using a kernel of
size 20 from OpenCV [1]. Then, to generate an image of the
target person with a bald head, we employ Stable Diffusion
in conjunction with ControlNet [18]. The prompt to generate
the bald head is “bald, clean skin, smooth bald, small head,
albedo.” The negative prompt is “hair, wrinkles, shadow,
light reflection, tattoo, sideburns, facial hair, cartoonish, ab-
stract interpretations, hat, head coverings.” The examples are
shown in Fig. 1.
Other Attributes. Our goal is to synthesize the shape and
appearance of the facial attribute from the attribute DB into
the target individual as seamlessly as possible. To achieve
this, we first render the avatar from an attribute DB into the
same view, shape, and facial expressions as the target frame
of the target individual’s video, as described in Sec. 4.2 in
our main manuscript. Subsequently, we acquire the mask
of the rendered facial attribute by employing a face parsing
network [17, 21] and then slightly enlarge it by applying the
dilate function in OpenCV. We also perform the segmenta-
tion for the target individual’s image to acquire the mask of
the target facial attribute by utilizing the face parsing net-
work [17, 21], where the target facial part is subsequently
“removed” via inpainting by employing the Fast Marching
Method [15]. This process can be considered as a similar pro-
cess of “bald head synthesis” before integrating the desired
facial part from the attribute source. Finally, we seamlessly
integrate the facial attribute from the attribute avatar into
the target individual using Poisson blending [11]. Examples
of nose and mouth synthesis employing this technique are

Figure 1. Stable Diffusion Inpainting. We leverage Stable Dif-
fusion [13] and ControlNet [18] to remove the target’s hair and
make it bald, in order to synthesize different hair. The automat-
ically generated mask images represent the area designated for
inpainting.

Figure 2. Poisson Blending Inpainting. We use Poisson blend-
ing [11] to synthesize the facial attribute and the target’s face.

illustrated in Fig. 2.
Tracking and Masking. To extract FLAME parameters
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from images, along with their corresponding camera pa-
rameters, we utilize the DECA model [3]. When FLAME
parameters are directly extracted using the DECA model, we
notice that the head pose estimation is noisy and jittery, par-
ticularly in the frames where the eyes in the original images
are blinking. To improve the FLAME parameter estimation
quality, following the similar process of PointAvatar [20], we
apply an optimization procedure to align the 2D projection
of FLAME’s facial landmarks with the detection outputs of
an off-the-shelf 2D facial landmark detector [2]. This opti-
mization process is based on the assumption that the quality
of the 2D landmark detection is more precise. We minimize
the point-wise distance between the landmark obtained from
FLAME and the 2D facial landmark to optimize the shape,
pose, and camera parameters. Different from PointAvatar’s
approach, instead of using a singular translation vector for
each video, we employ a unique vector for every image
frame in scenarios involving in-the-wild video tracking.

To create the foreground mask image, we leverage an
off-the-shelf background matting network [5] to obtain the
portrait mask images from the videos. We use the face pars-
ing network [17, 21] to obtain part segmentations of the faces
and leverage SegmentAnything Model [7, 9] for segmenting
head accessories.

B. Postprocessing of Zero-Shot Transfer
We provide further details of the Eq. (13) in our main

manuscript, which is the process of combining the subsets
of point clouds from both avatars. In short, the zero-shot
process is performed via three steps: (1) naive composition
after segmentation by introducing additional point clouds
for the missing region; (2) optimization by aligning facial
landmarks for better alignment; and (3) color blending for
the added points for seamless outputs.
Obtaining the Additional Part from the Source Human.
We use the estimated segmentation masks of the face at-
tribute χϕ and χth that can be controlled via latent code z
to select the target human’s point cloud except for the fa-
cial attribute χth = 0 and source human’s point cloud that
includes the facial attribute χϕ = 1:

Pnaive = {xd,i
ϕ }χi

ϕ=1 ∪ {xd,i
th }χi

th=0 (1)

When we remove the facial attribute from the target human
and bring in the facial attribute from the source human, it
creates an empty space between the two point clouds. To
fill this missing region, as shown in Fig. 4a, we bring in
additional parts from the source human. Formally, this can
be represented as follows:

Pnaive w/ add = Pnaive ∪ {xd,i
ϕ }χi

ϕ,add=1 (2)

To create the additional segmentation mask χi
ϕ, add, we bor-

row the knowledge from the FLAME [8] by leveraging

Figure 3. Zero-Shot Landmarks for Optimization. The red dot
represents our personalized generative model’s k-nearest neigh-
bor of 3D Landmarks from FLAME keypoints, and the blue dot
represents the target’s k-nearest neighbor of 3D Landmarks from
FLAME keypoints.

(a) Before Optimize. (b) After Optimize. (c) Color Blending.

Figure 4. Zero-Shot Optimization Steps. The red box represents
the additional part to fill the empty space. Through zero-shot mod-
eling, we generate an avatar with a high-quality and reasonable
appearance in three stages of post-processing in Sec. B.

k-nearest neighbor N . Nk(P1, P2) denotes the k-nearest
neighbors in P2 for each point in P1. argminNk(P1, P2)
represents the indices of the k-nearest neighbors from points
in P1 to points in P2 [12]. We omit the subscript k when
k = 1.

Note that {xd,i
ϕ }χi

ϕ,add=1 denotes the additional point
clouds from the source human to fill the gaps between the
source human and target human because of the exception
of target human’s attribute, as shown in the red box of
Fig. 4a. To create χi

ϕ,add, We exclude the vertices from the
FLAME vertices xFLAME

th that are not associated with the
additional part by using χth and the back of the head part
of the FLAME that we designate. We denote the mask cue
for obtaining FLAME corresponding to the additional part
as χFLAME

th,add .

xFLAME
th,add = {xFLAME

th }χFLAME
th,add

(3)

We apply N to xd
ϕ and xFLAME

th,add to obtain the nearest neighbor
of source human. To create the additional part only, we use
(1− χϕ) except for source human’s attribute.

χϕ,add = (1− χϕ) ◦ argminNk(x
FLAME
th,add ,xd

ϕ), (4)

where ◦ represents the Hadamard product. We use k =
2000 to generate the additional point clouds as described in
Fig. 4a.
Optimization Step. After the naive composition, there is
still a gap between the source human’s face attribute and
target human’s other parts because of the misalignment of



the subject-specific FLAME canonical space, as shown in
Fig. 4a. To solve this issue, we apply the optimization pro-
cess to minimize the distance between the source human
and target human. To obtain the landmark points, we apply
the k-nearest neighbor function between the landmarks of
deformed FLAME vertices [3] and xd as follows:

xlandmarks = N (xFLAME landmarks,xd) (5)

We leverage the distance between the source human’s 3D
landmark points and the target human’s 3D landmark points
as shown in Fig. 3.

d1 = ∥xlandmarks
th − xlandmarks

ϕ ∥22 (6)

Furthermore, we calculate the squared distances between
points in the additional source human part, denoted as
{xd

ϕ}χϕ,add=1, and points in the target human, represented by
{xd

th}χth=0, from the k-nearest neighbors. For simplicity,
the superscript i is omitted.

d2 = ∥N ({xd
ϕ}χϕ,add=1, {xd

th}χth=0)∥22 (7)

We optimize the learnable angle-axis rotation vector R ∈
R3 and translation vector t ∈ R3 to minimize the distance
d = d1 + d2 by Adam optimizer [6]. Note that we apply
the rotation and translation vector at the subject-specific
FLAME-canonical space.

xfc
ϕ,moved = R · {xfc

ϕ }+ t (8)

We obtain the moved source human’s point cloud xd
ϕ,moved

from xfc
ϕ,moved by Eq. (8). As a consequence, the optimized

point cloud is represented as follows:

Poptim = {xd
ϕ,moved}χϕ◦χϕ,add=1 ∪ {xd

th}χth=0 (9)

The optimized rendering result is shown in Fig. 4b.
Blending Step. To generate a natural rendering of the addi-
tional part, denoted as {xd

ϕ}χϕ,add=1, we leverage the feature
information from the target human using the k-nearest neigh-
bor.

cdadd = argminN (xth, {xd
ϕ}χϕ,add=1) ◦ cdth (10)

nd
add = argminN (xth, {xd

ϕ}χϕ,add=1) ◦ nd
th (11)

The RGB and normal of the additional part come from the
target human, so we obtain the naturally blended avatar
through the zero-shot model. The natural blended results
are shown in Fig. 4c.
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Figure 5. Network Architecture of PEGASUS. In PEGASUS, the
latent code z serves as a condition for all the MLPs.

C. Implementation Details
Network Architecture In Fig. 5, we show the network ar-
chitecture of PEGASUS. Following PointAvatar [20], we
leverage ReLU activation function [10] for shading MLP,
and Softplus activation function for canonical and deforma-
tion MLP for every layer. Sig denotes the sigmoid function in
Fig. 5. Different from PointAvatar, we use an additional layer
to output segmentation cues χ in canonical MLP. Also, we
use two layers of MLP to create subject-specific canonical
offset Ogc→sc

Loss Functions. The total loss for PEGASUS is defined as
follows:

L = λrgbLrgb + λmaskLmask + λFLAMELFLAME + λvggLvgg

+ λnormalLnormal + λsegLseg + λz regLz reg

(12)

We leverage the loss functions from the facial implicit repre-
sentations from monocular inputs [19, 20] as follows:

Lrgb = ∥c− cGT∥ (13)

Lmask = ∥M −MGT∥ (14)

Lvgg = ∥Fvgg(c)− Fvgg(c
GT)∥ (15)

LFLAME =
1

N

N∑
i=1

(λe∥Ei − Êi∥2

+ λp∥Pi − P̂i∥2
+ λw∥Wi − Ŵi∥2)

(16)



(a) 1-Stage (b) 2-Stages (c) 3-Stages (d) GT

Figure 6. Ablation: reconstruction by offsets O. Our three-stage
canonical space framework creates reasonable and accurate recon-
struction.

Following PointAvatar, c and cGT denote the color of the
rendering images from PEGASUS and ground-truth color.
M denotes the mask from PEGASUS obtained by mpix =∑

i αiTi. Fvgg(·) represent the features of pretrained VGG
network [4, 14]. E ,P, and W are the pseudo ground truth
of the k-nearest neighbor vertices of the FLAME [8]. Note
that our method, PEGASUS, does not predict the shape
blendshapes basis S, directly using the k-nearest neighbor
vertices of the FLAME.

Given ground-truth object mask MGT
seg and the predicted

segmentation cues χd, the rendered color of the segmented
point cloud represents R(χd ◦ xd). The segmentation loss is
defined as:

Lseg = BCE(R(χd ◦ xd),MGT
seg ) (17)

BCE represent the Binary Cross-Entropy loss. R is the alpha
composition rendering function. We leverage the alpha com-
position function of PyTorch3D [12] to render the predicted
segmentation cues.

We adopt the normal loss to encourage high-fidelity ge-
ometry and texture as follows:

Lnormal = ∥n− nd∥ (18)

We generate the pseudo ground truth normal n from the V tp

and the avatar trained with a single identity of each V db. We
apply the regularization of latent code to be close to zero.

Lz reg = ∥z∥ (19)

Training Strategy We train PEGASUS in two stages. In the
first stage, we only use the target individual from V tp for
training. In this way, the initial point cloud is deformed from
a sphere to have a reasonable face shape. In the second stage,
we continue training using all part-swapped videos from V̂ tp

i .
We have empirically find that this two-stage training shows
more reliable training. In all of our experiments, we start the
second stage from the 10th epoch, using 1600 point clouds.

D. More Ablation Study
Multi-stage Canonical Spaces. In Fig. 6 and Tab. 3, our
multi-stage canonical space and point deformation method
outperforms the best metrics and quality compared to other

(a) Default Nose (b) Two Stages (c) Ours

Figure 7. Ablation: random sampling by offsets O. Multi-stage
canonical spaces enhance disentangled nose generation.
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Figure 8. Ablation: normal loss. The normal loss improves the
RGB and geometry quality of our model.

approaches. Notably, as an example of Fig. 6, the closest
high-quality reconstruction to the Ground Truth (GT) is
achieved by the three-stage approach.

Additionally, we randomly sample the nose latent codes
to utilize two and three-stage baselines in Fig. 7. Fig. 7
shows that the original architecture of PointAvatar fails to
disentangle the target attribute. Fig. 7 demonstrates that the
generic canonical space is necessary to generate disentangled
facial attributes from random sampling while preserving
individual identity.
Normal Loss. We show the advantage of our normal loss,
which is used for training the avatar model. In Fig. 8, the
result shows that the normal loss improves the RGB and
normal qualities, resulting in more realistic appearances.

E. Additional Experiments
Temporal Consistency. We employ the temporal consistent
metrics [16] to evaluate the preservation of identity across
generated image sequences. TL-ID denotes the temporally
local identity preservation, which evaluates the consistency
of image sequences locally, focusing on the pairs of adja-
cent frames. TG-ID represents the temporally global identity
preservation metric to measure the similarity across all pos-
sible pairs of video frames, including those that are not ad-



Method TL-ID↑ TG-ID↑ L2↓ LPIPS↓

CD + PA 0.9968 0.9095 114.73 0.1428
E4S + PA 0.9960 0.8677 110.66 0.1234
DELTA 0.9404 0.8368 135.03 0.1663
Oursswap+PA 0.9940 0.9558 97.170 0.1115

Oursperson-gen 0.9910 0.9254 105.65 0.1224
Ourszero shot 0.9908 0.9178 114.38 0.1328

Table 1. Temporal metric (TL-ID, TG-ID) [16] and transfer
accuracy (L2, LPIPS). We evaluate the SOTA baselines the same
as Tab. 1 with two types of metrics: temporal consistency and
preservation of transferred attributes.

Figure 9. Additional Results of Zero-Shot Transfer. PEGASUS
robustly transfers facial attributes to any target human without the
need for additional training.

Figure 10. Zero-Shot Interpolation. With the help of interpolation-
capable segmentation cues by the segmentation network of canoni-
cal MLP, we create interpolation in a zero-shot model.

jacent. We evaluate the same baselines in Tab. 1. As shown
in Tab. 1, our synthesis method, Oursswap+PA, represents
the best quality of the TG-ID. TL-ID does not show signifi-
cant differences and performs well across all baselines, as it
evaluates consistency only for adjacent frames.
Attributes Transfer. In Tab. 1, we further quantify the
preservation of the transferred attributes. We evaluate via the
metrics by masking the region except the target attribute. We
conduct a comparison between the images generated and the
attributes of novel head poses. Our method, Oursswap+PA,
outperforms the SOTA baselines.

(a) Default (b) Nose (c) Eyes (d) Eyebrows

Figure 11. Random sampling of PEGASUS. We randomly sample
the latent codes of the PEGASUS.
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Figure 12. Single Part-Swapped Avatar on Hat. Our synthesis
method creates high-quality and properly wearing avatars.

Figure 13. Limitations of the Synthetic DB. In the synthetic DB
generation process, we illustrate the instances of failure cases
through color-coded annotations. Orange box represents the ar-
tifacts occurring during the generation of attribute image. Red
box indicates instances of facial attributes that are physically in-
consistent, revealing inaccuracies in the appearance of the face.
Magenta box marks the failure case of the segmentation. Purple
box identifies instances where the diffusion model fails to generate
bald faces inconsistently. Yellow box signifies the failure cases in
post-processing.



F. More Results

Zero-Shot Transfer. Fig. 9 presents additional results of
zero-shot transfer. PEGASUS robustly and naturally trans-
fers facial attributes to any target human in the wild. Fig. 10
demonstrates facial attribute interpolation in zero-shot mod-
eling, aided by latent code z interpolation. This shows that
segmentation cues are capable of interpolation by the canon-
ical MLP.
Random Sampling. We present PEGASUS’ latent random
sampling result to support the additional generative aspect
of our approach in Fig. 11. We sample each latent code from
the Gaussian distribution with the mean and variance of
latent codes of each category. As depicted in Fig. 11, our
method successfully generates random samples exhibiting
distinguishable facial attributes.
Additional Categories. In Fig. 12, our synthesis method
maintains the identity better than other baselines and also
shows the hat similar to the original while being appropri-
ately worn by the avatar.

G. Limitations

As a limitation, the quality of our personalized avatar
still does not reach the photo-realistic quality, showing no-
ticeable artifacts. Also, due to the reliance on non-physical-
based methods for generating the synthetic DB, our approach
exhibits limitations in achieving physical accuracy. We de-
scribe the failure cases and limitations of the synthetic DB
generation in Fig. 13.
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