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In this supplementary material, we provide detailed de-
scriptions of text annotation process along with data sum-
mary; qualitative results for ablation studies; refiner de-
sign; the effect of the refiner; inference speed; the summary
of notations; network architectures utilized in our pipeline;
masking process; implementation for baselines; articulation
angle; and limitation. Additionally, for further results (the
qualitative comparison and the additional video results),
please refer to the accompanying supplementary video. The
video is also available in: https://youtu.be/YBRsu0pnTeA.

1. Dataset

Text prompt annotation. The datasets H2O [4],
GRAB [7], and ARCTIC [1] do not provide the text prompts
which describe the hand-object interactions. To facilitate
the generation of 3D hand-object interactions from text
prompts, collecting such text prompts is necessary. Text
prompts should include details about the interacting hand
type (e.g., left hand, right hand, and both), the action in-
volved (e.g., grab, place, lift), and the object category or
name (e.g., apple, airplane, microwave). The basic format
for text prompts is as follows: “{action} {object category}
with {hand type}.” (e.g., “Place a book with both hands.”).
For the H2O and GRAB datasets, we automatically anno-
tate text using provided action labels, which include both
the action and object category. However, these labels do not
specify the interacting hand type. We determine the inter-
acting hand type based on the proximity between the hand
and the object in global 3D space; if the distance during
interaction is less than a predefined threshold (2cm), we de-
cide that the hand is involved in the interaction motion. For
the ARCTIC dataset, we conduct manual text annotation
by observing the video, noting the action, hand type, and
object category. We further augment the text prompt with
additional descriptors using passive form, subject modifica-
tions, and gerunds. For instance, prompts are augmented
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to formats like “A {object category} is {action} by {hand
type}.” (e.g. “A book is placed by both hands.”), or “{hand
type} {action} {object category}.” (e.g. “Both hands place
a book.”) or “{action}+ing {object category} with {hand
type}.” (e.g. “Placing a book with both hands.”).
H2O. The H2O dataset [4] consists of 660 interactions,
each involving two hands and one of 8 distinct objects. The
dataset is annotated with 11 unique verb labels. Using these
object and verb labels, and identifying which hand is in-
teracting with the object, we automatically generate 272
distinct sentences to represent these interactions. Addition-
ally, the dataset provides MANO hand parameters, object
meshes, as well as information on object rotation and trans-
lation.
GRAB. The GRAB dataset [7] consists of 1,335 motions
involving two hands and one of 51 distinct objects of vary-
ing shape and size. The dataset has 29 action labels. Us-
ing these object and action labels, and identifying which
hand is interacting with the object, we automatically gen-
erate 1,104 distinct sentences to represent these motions.
Additionally, the dataset provides MANO hand parameters,
object meshes, as well as information on object rotation and
translation.
ARCTIC. The ARCTIC dataset [1] is released for recon-
structing hands and objects from RGB images. We anno-
tate the data with our defined 11 action labels. We manu-
ally create 644 sentences to describe the motions, and these
sentences contain information about the action, the type of
object, and which hand is interacting. We annotate a total
of 4,597 motions. Essentially, this dataset provides MANO
hand parameters, object meshes, as well as information on
object rotation, translation, and articulation angle with the
pre-defined axis.

2. Qualitative results for ablation studies

We present the qualitative results in Fig. 1, to demon-
strate the effectiveness of geometry losses (distance map
loss Ldm and relative orientation loss Lro), conditions (con-
tact map m̂contact and object’s scale sobj), and our proposed
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Ours w/o 𝑓ref

Ours w/o 𝑓ref

Ours w/o 𝐿𝑑𝑚 & 𝐿𝑟𝑜 Ours w/o ෝ𝐦contact & 𝑠obj

Conventional positional encoding

Figure 1. In the first row, the comparisons of geometry losses
and conditions are presented. In the second row, the comparison
focuses on positional encodings.

Ours w/o 𝑓ref Ours

Non-contact

Figure 2. Our hand refinement network refines the contacts.

Ours w/o 𝐿penet & 𝐿contact Ours

Figure 3. Without the penetration loss and contact loss, the gener-
ated motions result in the hands and object not interacting.

positional encodings (frame-wise and agent-wise positional
encodings). In addition, we present the qualitative results
related to hand refinement in Figs. 2 and 3, to show the ef-
fectiveness of refiner f ref, and additional losses (penetration
loss Lpenet and contact loss Lcontact), respectively. In Figs. 1,
2, and 3, the text prompt employed is “Use headphones with
both hands.”.

Front Back

Generated motion

“Close a milk carton with both hands.”

Predicted contact map

“Pour milk with the right hand.”

Figure 4. We display the predicted contact map and the generated
motion, focusing on their variations in response to different text
prompts.

Front Back

Generated motion

“Pass a pyramid with the right hand.”

Predicted contact map

𝑠obj = 7𝑐𝑚

𝑠obj = 3𝑐𝑚

Figure 5. We illustrate how the predicted contact map and gener-
ated motion vary across different object’s scales.

We demonstrate the variant predicted contact maps and
generated motions, as shown in Figs. 4 and 5. The predicted
contact maps accurately reflect the text prompts. The mo-
tions vary depending on the predicted contact maps and the
prompts. In addition, the contact maps are predicted differ-
ently for different object’s scales, influencing the number of
fingers involved and the manner of grasping depending on
the object’s scale.



Table 1. Comparative physical realism scores for the different re-
finer designs.

Method Physical realism
Diffusion-based hand refiner 0.1682 ± 0.0006
Ours 0.8839 ± 0.0005
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Figure 6. The physical realism score with ground-truth (GT),
noisy, and refined motion parameters. Synthetically created noisy
motion parameters are produced by incorporating the function of
Gaussian noise, which distorts the ground-truth motion parame-
ters.

3. Refiner design

We compare our hand refinement network with the
diffusion-based hand refinement network. It is counterin-
tuitive to apply the diffusion-based approach for refining
already generated motions by fTHOI. The diffusion model
necessitates adding noise to the already generated motions
through a diffusion forward process, and then denoising
them via a backward process. Given this inefficiency, we
propose a refiner that does not rely on the diffusion-based
method. Additionally, in terms of performance, our refiner
f ref demonstrates superior results as shown in Tab. 1.

4. Effect of refiner

We demonstrate the effectiveness of our hand refine-
ment network f ref as shown in Fig. 6. The physical realism
score is highly increased by our hand refinement network
even it outperforms that of ground-truth motion.

5. Inference speed

We measure the time required to generate 150 frames
of hand-object interaction using an RTX 4090, with the
detailed results presented in Tab. 2. Notably, our method
demonstrates faster performance compared to the diffusion-
based method MDM [8].

Table 2. Inference speed.

Method Time
MDM [8] 28.5s
IMoS [2] 101s

Ours
Contact map f contact 0.011s
Text2HOI fTHOI 4.9s
Refinement f ref 0.013s

Table 3. Notations.

Symbol Definition
T Text prompt
fCLIP(T) Text features
Mobj Canonical object mesh
H∗ Hand type (left, right, both)
x Motion
xl Motion at l-th frame
xt Noised motion at t-th diffusion time-step
x0 Clean motion
xlhand Left hand motion
xrhand Right hand motion
xhand Hand motion
xobj Object motion
T The number of diffusion steps
L Motion length
Lmax Maximum motion length (=150)
sobj Object’s scale
P Object point cloud
Pdef Deformed object point cloud
Fobj (Global) object features
V Hand vertices
V The number of hand vertices (=778)
J Hand joints
J The number of hand joints (=21)
mcontact Contact map
X Embedded value (motion, condition)
·̂ Estimated value (output)
·̃ Refined value (output)
f Network

6. Notations

We summarize notations used in main paper and supple-
mentary material in Tab. 3.

7. Network

Several networks are involved in our framework: con-
tact prediction network f contact, text-to-3D hand-object in-
teraction generator fTHOI, and hand refinement network
f ref.
Contact prediction network. We predict the contact map
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Figure 7. Predicting the contact map consists of 4 steps. 1) From a canonical object mesh Mobj, we compute the object’s scale sobj. Then,
we sample the point cloud P using the farthest point sampling algorithm, and normalize P to Pnorm by dividing it with sobj. The PointNet
fPointNet receives Pnorm as input, to extract the global object features Fobj and local object features Fl

obj. 2) From a text prompt T, CLIP
text encoder fCLIP extracts the text features fCLIP(T). 3) At training time, we extract the vector zcontact using the contact encoder f enc from
Pcontact that is concatenated with the ground-truth contact map mcontact and the normalized point cloud Pnorm. At inference time, we sample
zcontact from Gaussian distribution. 4) We concatenate the diverse features Fobj, Fl

obj, f
CLIP(T), sobj, and zcontact, to produce Fc. Finally, the

contact decoder f dec predicts the contact map m̂contact from Fc.

mcontact from a text prompt T and a canonical object mesh
Mobj. The contact map prediction procedure involves four
steps: 1) extracting object features from the object; 2) ex-
tracting text features from the text prompt; 3) sampling a
Gaussian random noise vector; and 4) predicting the con-
tact map, as illustrated in Fig. 7.

We first compute an object’s scale sobj ∈ R1 that rep-
resents the maximum distance from the center of object
mesh Mobj to its vertices. Then, we sample N -point cloud
P ∈ RN×3 from the vertices of Mobj (N = 1, 024) us-
ing the farthest point sampling (FPS) algorithm [5]. Sub-
sequently, P is normalized to Pnorm by dividing it with
sobj. We utilize PointNet fPointNet [5] to extract local ob-
ject features Fl

obj ∈ RN×64 and global object features
Fobj ∈ R1,024 from the normalized point cloud Pnorm.

Second, we extract the text features fCLIP(T) ∈ R512

from the text prompt T using CLIP text encoder fCLIP [6].
Third, at training time, the vector zcontact ∈ R64 is en-

coded from the concatenated input Pcontact ∈ RN×4 with
Pnorm ∈ RN×3 and the ground-truth contact map mcontact ∈
RN×1 using the contact encoder f enc. At inference time,
zcontact is sampled from Gaussian distribution.

Fourth, we concatenate Fobj, Fl
obj, sobj, fCLIP(T), and

zcontact. Since they have varying feature dimensions, we
duplicate these features N times except Fl

obj, to align the
dimension shape: Repeat(Fobj) : R1,024 → RN×1,024,
Repeat(sobj) : R1 → RN×1, Repeat(fCLIP(T)) : R512 →

RN×512, and Repeat(zcontact) : R64 → RN×64. Finally, the
concatenated features Fc ∈ RN×1,665 are fed to the contact
decoder f dec to predict the contact map m̂contact ∈ RN×1.
The architectures of fPointNet, f enc, and f dec are detailed in
Tabs. 4, 5, and 6, respectively.
Text-to-3D hand-object interaction generator. Our gen-
erator fTHOI receives several inputs: time-step t, text fea-
tures fCLIP(T), object features Fobj, contact map m̂contact,
object’s scale sobj as condition, and noised motion xt as in-
put. Then, it outputs the denoised motions x̂0. The struc-
ture of fTHOI includes various layers: input embedding lay-
ers (f in, lhand, f in, rhand, f in, obj), condition embedding layers
(f ts, f text, f obj), a Transformer encoder, and output embed-
ding layers (f out, lhand, f out, rhand, f out, obj). The specific ar-
chitectures of the input and condition embedding layers (see
Tab. 7), Transformer encoder (see Tab. 8), and output em-
bedding layers (see Tab. 9) are detailed in their respective
tables.
Hand refinement network. Our hand refinement network
f ref receives the generated hand motion x̂0,hand ∈ R2L̂×99

(x̂0,hand = {x̂l
0,lhand ∈ R99, x̂l

0,rhand ∈ R99}L̂l=1), hand joints

Ĵhand ∈ R2L̂×J×3 (Ĵhand = {Ĵl
lhand ∈ RJ×3, Ĵl

rhand ∈
RJ×3}L̂l=1), contact map m̂contact ∈ RN×1, deformed ob-
ject’s point cloud P̂def ∈ RL̂×N×3, and distance-based
attention map matt ∈ R2L̂×J×3 (matt = {ml

att, left ∈
RJ×3,ml

att, right ∈ RJ×3}L̂l=1) as input, where L̂ is an es-



Table 4. Architecture of PointNet fPointNet. N represents the num-
ber of points of point cloud. k denotes the kernel size. BN denotes
a batch normalization. I represents an identity matrix. x denotes
the output of the previous layer.

Layer Operation Output Features
input Pnorm N × 3

transpose transpose 3×N
STN-conv1 (k=1) Conv 1D + BN + ReLU 64×N
STN-conv2 (k=1) Conv 1D + BN + ReLU 128×N
STN-conv3 (k=1) Conv 1D + BN + ReLU 1, 024×N

max (axis=1) max 1, 024
STN-fc1 Linear + BN + ReLU 512
STN-fc2 Linear + BN + ReLU 256
STN-fc3 Linear 9
reshape reshape 3× 3
identity x = x+ I 3× 3

multiplication Pnorm × x N × 3
transpose transpose 3×N

conv1 (k=1) Conv 1D + BN + ReLU 64×N
transpose transpose N × 64

assign Fl
obj = x N × 64

transpose transpose 64×N
conv2 (k=1) Conv 1D + BN + ReLU 128×N
conv3 (k=1) Conv 1D + BN 1, 024×N
max (axis=1) max 1, 024

assign Fobj = x 1, 024

Table 5. Architecture of contact encoder f enc. N represents the
number of points of point cloud. k denotes the kernel size. BN
denotes the batch normalization. x denotes the output of previous
layer.

Layer Operation Output Features
input Concatenate(Pnorm,mcontact) N × 4

transpose transpose 4×N
STN-conv1 (k=1) Conv 1D + BN + ReLU 64×N
STN-conv2 (k=1) Conv 1D + BN + ReLU 128×N
STN-conv3 (k=1) Conv 1D + BN + ReLU 1, 024×N

max (axis=1) max 1, 024
STN-fc1 Linear + BN + ReLU 512
STN-fc2 Linear + BN + ReLU 256
STN-fc3 Linear 16
reshape reshape 4× 4
identity x = x+ I 4× 4

multiplication Pnorm × x N × 4
transpose transpose 4×N

conv1 (k=1) Conv 1D + BN + ReLU 64×N
conv2 (k=1) Conv 1D + BN + ReLU 128×N
conv3 (k=1) Conv 1D + BN 1, 024×N
max (axis=1) max 1, 024

fc1 Linear + BN + ReLU 512
fc2 Linear + BN + ReLU 256
fc3 Linear 128

split mean zµ 64
variance zσ2 64

reparameterize zcontact 64

timated motion length. We concatenate them to use them as
input. First, the hand joints are reshaped: Ĵhand ∈ R2L̂×3J .

Table 6. Architecture of contact decoder f dec. ‘slope’ denotes the
negative slope of LeakyReLU.

Layer Operation Output Features
input Fc N × 1, 665
fc1 Linear + LeakyReLU(slope=0.2) N × 512
fc2 Linear + LeakyReLU(slope=0.2) N × 256
fc3 Linear + LeakyReLU(slope=0.2) N × 128
fc4 Linear N × 1

Table 7. Architectures of input and condition embedding layers in
text-to-3D hand-object interaction generator fTHOI. {} denotes a
concatenation.

Layer Operation Output Features
input xl

t,lhand 99

f in, lhand Linear 512

input xl
t,rhand 99

f in, rhand Linear 512

input xl
t,obj 10

f in, obj Linear 512

input t scalar
f ts-pe Positional encoding 512

f ts-fc1 Linear + SiLU 512

f ts-fc2 Linear 512

input fCLIP(T) 512

f text Linear 512

input {Fobj, m̂contact, sobj} 2049

f obj Linear 512

Second, the contact map is duplicated 2L̂ times and re-
shaped: m̂contact ∈ R2L̂×N . Third, the deformed object’s
point cloud is duplicated 2 times, and the computation of the
norm is applied across the last dimension: P̂def ∈ R2L̂×N .
Fourth, the distance-based attention map is reshape: matt ∈
R2L̂×3J . We concatenate x̂0,hand, Ĵhand, m̂contact, P̂def, and
matt to create the input xref = {xl

ref, lhand,x
l
ref, rhand}L̂l=1 ∈

R2L̂×(99+3J+N+N+3J). (99 + 3J + N + N + 3J) is
2,273, where J = 21 and N = 1, 024. The hand inputs
xl

ref, lhand, and xl
ref, rhand are fed to hand input embedding lay-

ers f in, lhand
ref and f in, rhand

ref , respectively, to obtain the embed-
dings Xl

ref, lhand ∈ R512 and Xl
ref, rhand ∈ R512. Then, they

are applied the frame-wise and agent-wise positional en-
codings and masked using H∗, and fed to Transformer en-
coder. Then, Transformer encoder outputs the refined em-
beddings X̃l

lhand ∈ R99 and X̃l
rhand ∈ R99. These embed-



Table 8. Architecture of Transformer encoder in text-to-3D hand-
object interaction generator fTHOI. LN denotes a layer normal-
ization. n=8 denotes that the layer repeat 8 times. x denotes the
output of previous layer. L̂ represenst the estimated motion length.

Layer Operation Output Features

input Xt (1 + 3L̂)× 512

n=8

Multi-Head Attention Self attention
(1 + 3L̂)× 512

(h=4) (SA)

Residual Xt = Xt+SA (1 + 3L̂)× 512

Normalize1 LN (1 + 3L̂)× 512

fc1 Linear + GeLU (1 + 3L̂)× 1024

fc2 Linear (1 + 3L̂)× 512

Residual Xt = Xt + x (1 + 3L̂)× 512

Normalize2 LN (1 + 3L̂)× 512

Table 9. Architectures of output embedding layers in text-to-3D
hand-object interaction generator fTHOI.

Layer Operation Output Features
input Xl

0,lhand 512

f out, lhand Linear 99
input Xl

0,rhand 512

f out, rhand Linear 99
input Xl

0,obj 512

f out, obj Linear 10

dings are passed through f out, lhand
ref and f out, rhand

ref and con-
verted to refined hand motions x̃l

lhand and x̃l
rhand. The fi-

nal refined hand motions is expressed as follows: x̃hand =

{x̃l
lhand, x̃

l
rhand}L̂l=1. The architecture of f ref is detailed in

Tab. 10.

8. Masking inputs, outputs, and losses

Using the hand-type variable H∗, we implement mask-
ing in three areas: 1) the inputs of the Transformer encoder,
2) the outputs of the Transformer decoder, and 3) the losses
(Ldm, Lro, Lpenet, Lcontact). The masking process depends on
the representation of H∗ as follows:
• If H∗ represents the ‘left hand’, then the inputs, outputs,

and losses pertaining to the ‘right hand’ are masked.
• Conversely, if H∗ represents the ‘right hand’, the corre-

sponding components for the ‘left hand’ are masked.
• If H∗ indicates ‘both hands’, no masking is applied to the

inputs, outputs, or losses.
The indicator functions 1left and 1right are defined ac-

Table 10. Architecture of hand refinement network f ref. Xref de-
notes {Xl

ref, lhand, X
l
ref, rhand}L̂l=1.

Layer Operation Output Features

Input xref 2L̂× 2, 273

f in, lhand
ref Linear L̂× 512

f in, rhand
ref Linear L̂× 512

Transformer encoder

n=8

Multi-Head Attention Self attention
2L̂× 512

(h=4) (SA)

Residual Xref = Xref+SA 2L̂× 512

Normalize1 LN 2L̂× 512

fc1 Linear + GeLU 2L̂× 1024

fc2 Linear 2L̂× 512

Residual Xref = Xref + x 2L̂× 512

Normalize2 LN 2L̂× 512

f out, lhand
ref Linear L̂× 99

f out, rhand
ref Linear L̂× 99

cording to H∗ as follows:

{1left,1right} =


{1, 0}, if H∗ is ‘left hand’
{0, 1}, if H∗ is ‘right hand’
{1, 1}, if H∗ is ‘both hands’

(1)

Masking the inputs means that the attention mechanism
is inhibited for those inputs. Masking the outputs results in
the visualization of those outputs being blocked. Masking
the losses implies that backpropagation for those losses is
restricted.

9. Implementation details for baselines

We maintained the baselines’ model architecture, train-
ing scheme, and inference process, and just adjusted the
model’s output dimension to obtain parameters for two
hands and for object [2, 3, 8]. We used their pre-estimated
length if they had a length estimator; otherwise, we used
their predefined fixed length. We employed hand-type se-
lection for masking the hand input and hand output, follow-
ing the approach of our method.

10. How to use the articulation parameter

The articulation parameter is generated for all objects,
regardless of their type. However, its actual application de-
pends on datasets using articulation indicator. For articu-
lated objects in ARCTIC dataset, the indicator is set as true



and the articulation is reflected. For rigid objects in H2O
and GRAB datasets, the indicator is set as false and the ar-
ticulation parameter essentially acts as a placeholder and is
not applied.

11. More qualitative results

Fig. 8 shows the diverse hand-object interactions from
the same prompt ‘Type a laptop with both hands.’. Fig. 9
demonstrates the hand pose change in canonical coordinate.
Fig. 10 illustrates the varying results according to different
hand types. Each figure illustrates a sequence of key frames
extracted from a video, displayed in a grid format of M rows
and N columns. The frames are organized to represent the
temporal progression of the video from left to right and top
to bottom, simulating the temporal order of the events de-
picted in the video.

12. Limitation.

Hand-object interacting motions are generated from the
text prompt, considering the relative 3D location and con-
tact between hands and an object; while we are missing
forces between them, which may provide better physical un-
derstanding. Future works may need to consider such new
aspects.
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Figure 8. The diverse hand-object interactions from the same prompt ‘Type a laptop with both hands.’. The sequence is from left to right
and top to bottom.



Figure 9. Generated motions (left) and hands in MANO canonical space (right) for the text prompt, ‘Grab a box with the right hand.’. The
sequence is from left to right and top to bottom.



Figure 10. The different hand type results for the text prompts ‘Grasp a cappuccino with the left hand.’ and ‘Grasp a cappuccino with the
right hand.’. The sequence is from left to right and top to bottom.
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