
ExMap: Leveraging Explainability Heatmaps for Unsupervised Group
Robustness to Spurious Correlations

Supplementary Material

In this supplementary material, we present additional de-
tails about the following:
• The datasets used - C-MNIST, Waterbirds, CelebA, Ur-

bancars, Urbancars single shortcut variants, Waterbirds
(FG-Only).

• Experimental Setup - The details on the heatmap extrac-
tion and clustering phase in ExMap.

• Additional results providing further intuition on how
ExMap captures underlying group information.

• More results on the robustness of our method with stan-
dard errors.

• The connection between group robustness and fair clus-
tering.

• Limitations and Societal Impact.

1. Datasets
We present the number of examples from each group for
all the datasets, and the process of generating them. For C-
MNIST, we used the same setup as in [2]. For Waterbirds
and CelebA, we use the same setup as in [6, 8]. For Urban-
cars we use the same setup as in [7].

1.1. C-MNIST

We create a dataset where we have control of the number of
elements in each group and what the spurious attribute is.

The Colored-MNIST dataset is a synthetic dataset based
on the well-known MNIST. The MNIST dataset is a collec-
tion of several thousands of examples of handwritten digits
(0-9). The images are single-channelled (black and white)
and have a size of 28x28 pixels, and are accompanied by a
label giving the ground truth.

We use the original data split, 60000 train and 10000
test. Since the original dataset does not have a validation
set, we use the last 10000 images of the training set as the
validation set.

We convert the dataset into a 2 class problem by modify-
ing the task. This is done by simply going over to classify
the numbers as smaller or equal to 4 (y “ 0 : value ă“ 4),
and larger than 4 (y “ 1 : value ą 4). To create the spuri-
ous attributes we make use of colors. Red is used as the first
spurious attribute (s “ 0 : RGB “ p255, 0, 0q), and green
is used as the second spurious attribute (s “ 1 : RGB “

p0, 255, 0q). Naturally, the images will need to be made 3-
channeled to account for this change.

As we are interested in combating spurious correlations
we create the dataset in a way such that there are correla-
tions between the classes and spurious attributes. We use

Split Total Data Groups
Group
0
(y=0,
s=0)

Group
1
(y=0,
s=1)

Group
2
(y=1,
s=0)

Group
3
(y=1,
s=1)

Train 50,000 254 25,284 24,231 231
Val 10,000 45 5,013 4,893 49
Test 10,000 48 5,091 4,815 46

Table 1. Data splits in the Colored-MNIST dataset.

99% correlation. That means that 99% of images from one
class will have the same colour, while the remaining 1%
will have the other colour. The amount of correlation was
deliberately chosen so that ERM worst group accuracy is
low. Table 1 shows the number of images in each group for
each split.

1.2. Waterbirds

Waterbirds [10] is a synthetic dataset created with the pur-
pose of testing a model’s reliance on background. The
dataset consists of RGB images depicting different types
of birds on different types of backgrounds. The different
types of birds are divided into 2 classes, landbirds (y “ 0)
and waterbirds (y “ 1). The different backgrounds are also
divided into 2 and represent the spurious attributes of this
dataset: land background (s “ 0) and water background
(s “ 1). The group distributions across the different splits
are presented in Table 2.

The Waterbirds dataset is created by using 2 other
datasets, the Caltech-UCSD Birds-200-2011 (CUB) dataset
[13] and the Places dataset [14]. The CUB dataset contains
images of birds labelled by species and their segmentation
masks. To construct the Waterbirds dataset the labels in the
CUB dataset are split into 2 groups, where waterbirds are
made up of seabirds (albatross, auklet, cormorant, frigate-
bird, fulmar, gull, jaeger, kittiwake, pelican, puffin, or tern)
and waterfowls (gadwall, grebe, mallard, merganser, guille-
mot, or Pacific loon), while the remaining classes are la-
belled as landbirds. The birds are cropped using the pixel-
level segmentation masks and pasted onto a water back-
ground (categories: ocean or natural lake) or land back-
ground (categories: bamboo forest or broadleaf forest) from
the Places dataset.

The official train-test split of the CUB dataset is used,
and 20% of the training set is used to create the validation
set. The group distribution for the training set is such that



Split Total Data Groups
Group
0
(y=0,
s=0)

Group
1
(y=0,
s=1)

Group
2
(y=1,
s=0)

Group
3
(y=1,
s=1)

Train 4,795 3,498 184 56 1,057
Val 1,199 467 466 133 133
Test 5,794 2,255 2,255 642 642

Table 2. Data splits in the Waterbirds dataset.

most images (95%) depict bird types with corresponding
backgrounds, to represent a distribution that may arise from
real-world data. This distribution turns the background into
a spurious feature. Take note that there is a distribution shift
from the training split to the validation and test splits which
are both more balanced, and include many more elements
for the minority group. The creators of the dataset argue
that they do this to more accurately gauge the performance
of the minority groups, something that might be difficult if
there are too few examples. They also do this to allow for
easier hyperparameter tuning.

1.3. Celeb-A

CelebA here is a reference to a part of the CelebA celebrity
face dataset [9] that was introduced by [10] as a group
robustness dataset. From the original dataset, the feature
Blond Hair is used as the class, meaning that the images
are divided into people who are not blonde (y “ 0) and
blonde (y “ 1). Meanwhile, as a spurious attribute, we use
the feature Male from the original dataset, which divides
into female (s “ 0) and male (s “ 1). The official train-
val-test split of the CelebA dataset is used. Note in Table 3,
that the splits are likely randomly created, which results in
equally group-distributed splits. Across all splits the group
(blonde, male) is the smallest.

This dataset tests for model reliance on strongly corre-
lated features in a real-world dataset. Observe in Table 3
that g3 “ py “ 1, s “ 1q which represents blonde males
is severely underrepresented compared to the other groups,
hence we expect the model to learn gender as a spurious
feature for the class blonde.

Split Total Data Group
0
(y=0,
s=0)

Group
1
(y=0,
s=1)

Group
2
(y=1,
s=0)

Group
3
(y=1,
s=1)

Train 162,770 71,629 66,874 22,880 1,387
Val 19,867 8,535 8,276 2,874 182
Test 19,962 9,767 7,535 2,480 180

Table 3. Data splits in the CelebA dataset.

1.4. Urbancars

We use Urbancars, as proposed by [7]. There are 4000 im-
ages per target class, i.e. 8000 images in total. The target
class is the car type (country/urban), while the two shortcuts
are the background type (country/urban), and co-occurring
object (country/urban). For the exact list of the cars, ob-
jects, and background, please see [7].

1.5. Urbancars single shortcut variants

The original Urbancars data has eight group combinations
due to two classes, and two shortcuts (Background and
Co-Occurring object). For the single shortcut variants, we
merge the 4 extra groups for one particular shortcut, to leave
4 groups for the other. For example: To create Urban-
cars (BG), we merge the 4 groups from the other shortcut
(CoObj), to create four groups containing the single short-
cut of background for each of the two classes. A similar
procedure is adopted to create Urbancars (CoObj).

1.6. Waterbirds (FG-Only)

This dataset is created to evaluate how well the trained
models circumvent background reliance on the Waterbirds
dataset, since background is the shortcut in the data. We re-
move the backgrounds in all the images only on the test set.
In Figure 1, we present some examples.

Original Data Foreground Only 

Figure 1. Waterbirds (FG Only)

2. Experimental Setup
In this section, we present more details on the heatmap ex-
traction phase, clustering choice, and the hyperparameters
used.

2.1. Heatmap Extraction

Following SPRAY [3], which reports good results across
different downsizing of heatmaps, we sweep predominantly



Methods Group Info C-MNIST Urbancars (BG) Urbancars (CoObj)

Train/Val WGA(%)Ò Mean(%) WGA(%)Ò Mean(%) WGA(%)Ò Mean(%)

Base (ERM) ✗/✗ 39.6 99.3 55.6 90.2 50.8 92.7
GEORGE (DFR) ✗/✗ 71.7˘0.1 95.2˘0.3 69.1˘0.9 83.6˘1.0 76.9˘0.9 91.4˘1.0
DFR+ExMap (ours) ✗/✗ 72.5˘0.2 94.9˘0.3 71.4˘0.8 93.2˘0.2 79.2˘0.7 93.2˘0.3

Table 4. Group/mean test accuracy with std. Results over 5 runs.

Figure 2. ExMap based misclassifications on challenging exam-
ples (Waterbirds): In each of these images, the object of interest
(bird) is co-habited by dominant peripheral objects such as humans
and other birds. These situations are challenging for the classifier
to discern the relevant object from the irrelevant ones.

over the following downsizings: [224, 112, 100, 56, 28, 14,
7, 5, 3]. The downsizing of heatmaps additionally helps in
speeding up the clustering process and mitigating potential
out-of-memory issues.

2.2. Clustering choice

Since ExMap if flexible to the choice of clustering algo-
rithm, we experiment with spectral clustering, UMap re-
duced KMeans [6], and KMeans. We use the eigengap
heuristic with spectral to automatically choose the number
of clusters, and sweep over different cluster sizes for the
KMeans based methods. We look for the largest gap in
among the first 10 eigenvalues. Otherwise we test for 2-15
clusters for kmeans (overclustering as practiced in [12]).

2.3. Hyperparameters

We use the same hyperparameters for DFR and JTT as in
the original papers [6, 8].

For DFR, we perform the following steps:
• Given (pseudo)group labels we create a retraining set by

subsampling each group to the size of the smallest group.
These are then used to retrain the last layer. After being
passed through the feature extractor, each sample is nor-
malised based on the data used to retrain the last layer.

• Similar to [6], we use logistic regression with L1-loss.
• The strength of L1 is swept over [1.0, 0.7, 0.3, 0.1, 0.07,

0.03, 0.01]. The sweep is performed by randomly split-
ting the retraining dataset in 2, and performing retrain-
ing with one half and evaluating the performance with
the other. This is performed 5 times with different splits
and the best strength is chosen based on highest worst
(pseudo)group accuracy.

Method Accuracy (%)
Waterbirds CelebA

WGA / Mean WGA / Mean

Base (ERM) 76.8 / 98.1 41.1 / 95.9
GEORGE (DFR) 91.7 ˘ 0.2 / 96.5 ˘ 0.1 83.3 ˘ 0.2 / 89.2 ˘ 0.2
DFR+ExMap 92.5 ˘ 0.1 / 96.0 ˘ 0.3 84.4 ˘ 0.5 / 91.8 ˘ 0.2

Table 5. Group / mean test accuracy with std. Results over 5 runs.

• When L1 strength has been selected, we retrain using the
whole retrain set. This is performed 20 times with differ-
ent subsamplings. The weights from each subsampling
are averaged (this is viable according to DFR authors) to
yield the final last layer weights. The normalisation of
data is also averaged across the 20 runs.
For the ERM model, we perform the following steps:

• We use Resnet-18 for CMNIST, Resnet-50 for the others.
We start with imagenet-pretrained Resnet-50 similar to
previous work as it was observed to perform better. For
all settings we replace the final fully connected layer to
reflect the nature of our problems, i.e. 2 classes.

• Learning rate: 3e-3, weight decay: 1e-4, cosine learning
rate scheduler.

• Batch size:We use batch size of 32 for Waterbirds and
Urbancars, 100 for CelebA, and 128 for C-Mnist.

• Epochs: We train for 100 epochs on Waterbirds and Ur-
bancars, 20 for CelebA, and 10 for C-Mnist.

• We use early stopping using the best mean (weighted) val-
idation accuracy
For GEORGE, we perform the following steps:

• Acquire feature extractor (base ERM) outputs.
• Max normalise features.
• Cluster features as exmap or using UMAP+kmeans. We

use 2 dimensions for the UMAP reduction, and high num-
ber of clusters (overclustering regime following [12]).

3. Capturing of Group Information
In addition to why ExMap representations are better for
downstream group robustness over raw classifier features,
we are also interested in what kind of group information the
ExMap representations capture. The advantage of heatmaps
are that they capture only the relevant features, while previ-
ous approaches that cluster in the feature space are prone
to be effected by features that are irrelevant for the fi-
nal prediction. To further substantiate our findings, we
generate additional results to demonstrate that ExMap in-



Methods Group Info Waterbirds CelebA

Train/Val WGA(%)Ò Mean(%) WGA(%)Ò Mean(%)

Base (ERM) ✗/✗ 76.8 98.1 41.1 95.9
BPA ✗/✗ 71.3 87.1 83.3 90.1
DFR+ExMap (ours) ✗/✗ 92.5 96.0 84.4 91.8

Table 6. Comparison with Fair Clustering: Worst group and mean accuracy on Waterbirds and CelebA.

Group 0 (Class 1)

Group 0 (Class 0)

Group 1 (Class 0)

Group 1 (Class 1)

Cluster 0

Cluster 1

Cluster 3

Cluster 5

Cluster 4

Cluster 2

Figure 3. Groups in UrbanCars: (Left) Ground truth group la-
bels per class. We observe minority groups (the spurious corre-
lations) in the highlighted bottom right corner. (Right) Pseudo-
labels learned by ExMap based clustering reveals a similar over-
all structure, conserving the dominant groups (green and yellow),
while capturing the minority groups (blue cross and circle) as well.

deed captures the underlying group information. In Fig-
ure 3, we plot the pseudo-labels for UrbanCars (CoObj)
after ExMap based clustering. ExMap captures both the
dominant groups and the minority groups in the dataset,
as indicated by the pseudo-labels learned. We also note
that ExMap does not necessarily learn the same number of
groups as in the ground truth data, since this information
is assumed unavailable. The key observation from this fig-
ure is that ExMap is successful in identifying the dominant
and minority group structure in the data. The group robust
learner (such as DFR) can then sample across these groups
in a balanced manner while retraining, leading to mitigation
against spurious correlations.

4. Robustness Analysis
Our results in Table 1 and Table 2 in the main text are pre-
sented as the average of five runs. To illustrate the robust-
ness of the compared approaches, we further provide the
standard deviation for the ExMap and the main competitor
in Table 4 and Table 5. We observe that results are robust
across runs.

5. Connections to Fair Clustering
Given the close relationship between group robustness and
the domain of fair clustering [1, 4, 5], we briefly com-
ment on their connection and the potential of the insights
of ExMap in the fair clustering setting. The domains of fair
clustering and group robustness differ slightly, with the for-

mer aiming to improve mean accuracy independent of sensi-
tive attributes, while the latter aim to maximize worst group
accuracy. Therefore, there is a natural connection between
these two research areas. Sensitive attributes in fair cluster-
ing can be regarded as a special type of spurious correlation,
causally unrelated to the task. Recent work in fair clustering
has therefore adopted some of the insights from the field of
group robustness [11]. However, these approaches adopt a
GEORGE inspired approach (cluster in raw features space),
which we demonstrate to be sub-optimal in the context of
group robustness. While an in-depth exploration of this is
out-of-scope for this work, it could present an interesting
avenue of future work. In Table 6, we present the ExMap re-
sults on Waterbirds and CelebA with respect to the method
introduced in [11].

6. Limitations and Societal Impact
There are certain intuitive failure cases where the ExMap
approach is not as efficient. This occurs when the images
themselves are quite challenging to discern the objects of in-
terest (the class), from other peripheral objects in the scene.
In Figure 2, we present some examples of misclassifications
by ExMap based DFR. In these images, we can see that the
object of interest (bird), is co-habited by other dominant ob-
jects in the scene, such as humans and other birds. This cre-
ates an exceptionally challenging task for the classifier to
discern the relevant features for the task. We recognise the
need for robustness across challenging examples in datasets
as motivation for future work. With regard to social impact,
we recognise that model robustness to spurious correlations
is an important first step in ensuring fair, transparent, and
reliable AI that can be deployed in safety critical domains
in the real world. Elucidating why models classify as they
do, and specific failure cases uncovers shortcomings in ex-
clusively choosing mean test accuracy as a metric. As a
result, probing models for their weaknesses is as important
as exemplifying their strengths.
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