
PointBeV: A Sparse Approach to BeV Predictions

Supplementary Material

This document contains technical details about training
and implementation of models (Section A), further memory
consumption studies in (Section B), and additional details
on our Sparse Feature Pulling module (Section C) and on
our temporal model (Section D). We also detail more the
sparse inference settings (Section E). Finally we display
some predictions (Section F).

A. Technical Details
A.1. PointBeV Training

We train PointBeV using both image [13] and BeV augmen-
tations [50]. For BeV augmentations, viewpoint changes
(translations and rotations) are encoded in an augmentation
matrix. This matrix is applied on the bounding box coor-
dinates before building the ground-truth segmentation map,
and when projecting the pillar points points in camera co-
ordinates in the forward pass. We train static models for a
maximum of 100 epochs, as they always converge earlier.

The number of training epochs is an upper bound, we
get similar performance earlier (∼50 epochs in low reso-
lution with filtering, and ∼80 for high resolution without
filtering). Moreover, PointBeV trained for 30 epochs al-
ready performs beyond previous SOTA (see table below),
and each epoch is also much faster (15min/epoch for Point-
BeV vs. 52min/epoch for BEVFormer on a single 40GB
A100 GPU with maximum model batch size).

IoU (↑) vehicle No vis. filtering Vis. filtering
Backbone: EN-b4 224×480 400×800 224×480 400×800
PointBeV @30epochs 38.1 41.6 43.1 46.8

For the temporal model, PointBeV-T, we start from a
static checkpoint and we add a single submanifold tempo-
ral attention layer. The temporal layer is trained using 8
past frames for fair comparisons corresponding to 2 seconds
while the rest of the network is kept frozen.

A.2. Comparison with the Baselines

In Tab. 1, we take the official numbers from the papers
whenever available. However, across different publications,
the numbers are often reported in different settings in terms
of image resolution or vehicle filtering, preventing direct
comparison. Therefore, to provide a more complete view,
we trained the models on the 4 different settings on which
we compare them. We stress that the models are re-trained
specifically for these settings, in opposition to simply eval-
uating the official checkpoints on different settings.

In cases where the code is available, such as for CVT
[52] and Simple-BEV [13], we use it and only change the
image resolution and the visibility filtering. The official
CVT [52] repository already includes a metric that accounts
for visibility so we simply modify the visibility applied in
the loss function before retraining the models. For Simple-
BEV [13], we modify the code, particularly the dataloader,
to incorporate the visibility annotations. To ensure that the
implementations are correct, we compare in Tab. 8 the re-
sults of our reproduction against those reported in the pa-
pers, in their proposed settings. We see that they are very
similar.

When the code is not available, we replicated the
method. This is the case for BEVFormer [31], which does
not have an official segmentation code. For BEVFormer, we
used 6 layers defined by one deformable self-attention fol-
lowed by one deformable cross-attention with 4 heads and
8 offsets per points. We are comparing PointBeV with the
static BEVFormer model, and for fair comparisons, we are
using single-scale image features as indicated in the repro-
duction code of the official Simple-BEV repository. With
BEVFormer, we achieved results superior to those reported
in the original paper by utilizing a lower image resolution,
which validates the reproduction code (see Tab. 8).

Method Resolution Visibility IoU orig. IoU reproduced

Simple-BEV [13] 448×800 with filtering 46.6 46.56
CVT [52] 224×480 with filtering 36.0 36.63

BEVFormer [31] 640×1600 with filtering 44.4 —
448×800 with filtering — 45.56

Table 8. Comparison of the results obtained after training with
the official code under the setting of the paper and those reported
in the papers. Our experiments reached similar results.

A.3. Parameter Count

We analyze the number of parameters for various models
considered. The parameter counts were obtained from the
official codes. For a fair comparison we report the num-
ber of parameters using the same ResNet-50 [14] backbone
which also influences the neck network when there is one.
The neck network of PointBeV considers two resolutions,
returned by the backbone, and aligns them by applying bi-
linear interpolation to the smaller one. The channels of
these resolutions are then concatenated, followed by a series
of three convolutions to adjust the final channel dimension.

Method Backbone Neck VT Update Temporal Heads Total

CVT [52] 8.5M — 819k 244k — 37.1k 9.6M
LaRa [2] 8.5M 1.9M 2.6M 4.9M — 295k 18.2M
BEVFormer [31] 8.5M 9.5M 7.3M — — 442k 25.8M
PointBEV 8.5M 9.5M 291k 3.6M 564k 442k 22.9M

Table 9. Comparison of the number of parameters of several
models. For a fair comparison we used the same backbone, i.e.,
ResNet-50 [14]. The column ‘VT’ corresponds to ‘View Trans-
form’, that is any learnable operation involved in the camera-to-
BEV projection (e.g., a cross-attention for CVT and LaRa [2], all
deformable blocks for BEVFormer [31]). If available, BeV learn-
able grid parameters are accounted in the view transform column.

Method Backbone Resolution

224× 480 448× 800 640× 1600

LaRa [2] EN-b4 27 17 5
CVT [52] EN-b4 38 12 3
Simple-BEV [13] RN-50 11 11 10
BEVFormer [31] RN-50 71 63 23
PointBeV EN-b4 31 30 11
PointBeV RN-50 31 28 17

Table 10. Memory analysis of various models by comparing
maximum batch sizes during inference on a 40GB A100. ‘EN-
b4’ refers to EfficientNet-b4 [43], and ‘RN-50’ to ResNet-50 [14].

B. Further memory analysis
To complement the memory analysis described in the main
paper (Fig. 1, Fig. 7), we estimate the maximum training
and validation batch sizes of various models on a 40GB
A100 by studying the out-of-memory boundary in several
forwards and backwards. The aim is to study how the mod-
els scale and at what point they reach memory saturation.
During validation, the results in Tab. 10 indicate that Point-
BeV scales better than other models using an EfficientNet-
b4 [43], achieving a 2× increase in maximum validation
batch size compared to LaRa [2] and a 4× increase com-
pared to CVT [52]. Therefore, the model is more suited for
high-resolution tasks than the preceding models.

For training, as seen in Tab. 11, PointBeV can handle
significantly larger batch sizes and scales better in terms of
resolution compared to all other models.

C. Sparse Feature Pulling
In the context of BeV projection, the feature pulling mod-
ule takes as input a grid of image features and a list of co-
ordinates. It outputs a list of image features, correspond-
ing to the provided coordinates. The problem is that exist-
ing interpolation modules only work with a fixed number of
points per batch and per camera. This enforces models to
consider more points than the number of visible points per
camera. We propose a custom interpolation module that re-

Method Backbone Resolution

224× 480 448× 800 640× 1600

LaRa [2] EN-b4 5 3 1
CVT [52] EN-b4 5* 1* 1*
Simple-BEV [13] RN-50 8 5 2
BEVFormer [31] RN-50 10 8 3
PointBeV EN-b4 13 4 1
PointBeV RN-50 26 9 3

Table 11. Memory analysis of various models by comparing
maximum batch sizes during training on a 40GB A100. ‘EN-
b4’ refers to EfficientNet-b4 [43], and ‘RN-50’ to ResNet-50 [14].
‘*’ indicates that the model has been trained without checkpoint-
ing at the backbone level for a fairer comparison between models.
Checkpointing has a direct influence on the memory footprint.

Forward Backward

Module Mem (GiB) Time (ms) Mem (GiB) Time (ms)

Naive Feature Pulling 1.9 4.3 2.8 26.0
Sparse Feature Pulling 0.9 1.9 1.4 6.2

Table 12. Sparse Feature Pulling module memory and time
footprints. Results are for a batch composed of a single example.

moves this limitation by introducing a batch reference table.
Tab. 12 shows the benefits in terms of speed and memory of
our module in standard conditions for BeV methods. We
compared the native and custom modules under the stan-
dard use case. In details, we consider a 3D pillar BeV of
X × Y × Z = 200 × 200 × 8 points, and 6 feature im-
ages, one per camera. This setting is the one we encounter
in nuScenes [3]. Each feature image has 128 channels and
their resolution is the down-sampled one after the backbone,
i.e., a 224×480 original resolution leads to a down-sampled
28×60 resolution. Compared to its torch-based counterpart
(Tab. 12), our sparse interpolation module does not calcu-
late the features of points not visible in the cameras, result-
ing in faster computation and a smaller memory footprint.
Note that conventional use of the torch module requires to
apply after the interpolation a masking operation to remove
unused features. We took this operation into account in our
table. Our module demonstrates significantly lower mem-
ory and time usage. It is 2.3× faster for forward and 4.2×
for backward, with over 2× less memory consumption in
both cases.

D. Temporal model
One goal of the submanifold temporal attention module is to
apply attention to a reduced combination of points. There-
fore, we established a threshold τtemp at which a point is con-
sidered temporally active or inactive. To asses the number
of points filtered at each time step, we used a static model
and analyzed the distribution of logits in the prediction map

(Tab. 13). To be conservative, we set our threshold at the in-
flection point of the static model, i.e., at τtemp = sigm(−5).
Given the threshold considered, our module processes on
average only one tenth of the points in the past, which di-
vides the calculations by 10 compared with naive temporal
attention in torch.

τtemp sigm(0) sigm(−3) sigm(−5) sigm(−6) sigm(−7) sigm(−8) sigm(−9)
Points 725 1932 3895 6091 11266 27084 38442

IoU 37.0 39.1 39.9 40.0 40.2 40.2 40.2

Table 13. Analysis of the number of activated points according
to the applied temporal threshold τtemp. To do this, we take a
static model trained at 224 × 480 image resolution without vis-
ibility filtering having 39.9 IoU and calculated how many points
were above the considered threshold. The corresponding IoU is
the temporal model evaluated using the temporal threshold.

E. Sparse Inference
The introduction of sparse inference highlighted several pa-
rameters, such as the size of the densification patch and the
threshold for considering a coarse point as an anchor point.
To thoroughly analyze the impact of these metrics on sparse
evaluation, we retrieved the checkpoint of a model trained
without the visibility filter at a resolution of 224×480 with
an associated 38.09 IoU, and then we varied the aforemen-
tioned parameters during inference. By default, the number
of coarse points associated with its model is Ncoarse = 2500,
the threshold τ = 0.1, the fine patch size is kfine = 9.

E.1. Fine patch size

When varying the size of the densification patch, we ob-
serve that smaller patches lead to lower results, mainly due
to having only 1/16 of the total points in the coarse pass
(Tab. 14). However, considering the geometric pattern of
the coarse pass, the IoU plateaus beyond a certain window
size. This is logical, as the spacing between two coarse
points becomes less than half of the window size.

Patch size 1 3 5 7 9 11 13
Nfine 92 826 1,743 2,277 2,839 3,414 4,009
Memory (MB) 461 462 472 481 493 507 522

IoU vehicle (↑) 2.6 22.0 37.3 38.0 38.1 38.1 38.1

Table 14. Sparse evaluation on the nuScenes [3] validation set
of our model at resolution 224 × 480 without visibility filtering,
using different patch sizes for the fine pass. Coarse sampling is a
regular 50 × 50 grid (2,500 points). The reported memory is the
maximum memory allocated calculated without the backbone.

Qualitatively, the larger the patch size kfine, the greater
the number of activated points in the fine pass. Beyond a
certain point, when half the size of the patch exceeds the

distance between two neighboring points in the first pass,
we have a prediction that nearly does not change anymore.
Considering the trade-off between the number of points
considered, the patch size, and the final IoU, we have thus
selected a default patch size of kfine = 9, resulting in an IoU
of 38.09 as indicated in Tab. 1.

E.2. Anchor threshold

We also vary the anchor threshold τ at which a point is con-
sidered an anchor point (Tab. 15). It is noteworthy that the
distribution of activation scores for the points exhibits a rel-
atively long tail. Many points have an activation threshold
between 0 and 0.1, and at 0.1, already 71% of the points
have been filtered. If the threshold is too high, there is a
risk that certain regions will not be densified, leading to a
drop in IoU. If we densify the entire map, we lose the mem-
ory value of sparse inference. This tradeoff is exhibited in
Tab. 15.

Threshold τ 0.0 0.1 0.2 0.3 0.4 0.5
Nfine 40,000 2,839 2,212 1,868 1,627 1,430
Memory (MB) 1577 493 479 472 468 466

IoU vehicle (↑) 38.1 38.1 38.0 37.9 37.7 37.5

Table 15. Sparse evaluation of our model on the nuScenes [3]
validation set at resolution 224× 480 without visibility filtering,
using different threshold to activate anchor points before the fine
pass. The reported memory is the maximum memory allocated
without the backbone.

Qualitatively, as the anchor point threshold increases,
fewer points are considered active during the second pass,
which may result in missing important regions in the BeV
(see Fig. 9). Conversely, a threshold set too low tends to re-
gard too many points as significant, thereby losing the mem-
ory efficiency of the approach. Note that when the threshold
is τ = 0, even if the image is sub-sampled, as the patch size
is greater than half the spacing, we end up with an image
that has made predictions over the entire BEV. Considering
the trade-off between the number of points considered, the
anchor threshold and the final IoU, we have thus selected a
default threshold factor of τ = 0.1, resulting in an IoU of
38.09 as indicated in Tab. 1.

E.3. Sparse adaptative inference

We also examine the influence of the reduction factor in the
coarse pass by adjusting the kernel size to cover regions be-
tween two neighboring points (Tab. 16). This analysis is
directly related to Fig. 7 in the paper. It demonstrates that
subsampling 1/16 of the points is sufficient to achieve re-
sults similar to a model evaluating the entire grid in a single
pass. Beyond a certain reduction factor, which is related to
the size of the considered objects, performance decreases.

Ground Truth kfine: 1 kfine: 3 kfine: 5 kfine: 7 kfine: 9 kfine: 11 kfine: 13

Figure 8. Qualitative representation of different fine patch size kfine. Only the patch size applied around anchor points varies: the
higher, the greater the number of points that are activated during the fine pass. The first row represents the predictions, while the second
row depicts the associated binary masks. All white points outside the mask have a zero prediction. The model only considers active points
in the mask.

Ground Truth Fine threshold: 0.0 Fine threshold: 0.1 Fine threshold: 0.2 Fine threshold: 0.3 Fine threshold: 0.4 Fine threshold: 0.5

Figure 9. Qualitative representation of different fine threshold τfine. Only the threshold for activating anchor points varies: a lower
threshold leads to a higher number of points designated as anchor points. The first row represents the predictions, while the second row
depicts the associated binary masks. All white points outside the mask have a zero prediction. The model only considers active points in
the mask.

Subsample factor Sk 1 2 4 8 16 32 64
Densification size kfine — 3 5 7 9 13 17

Ncoarse 40,000 19,880 10,000 4,900 2,500 1,255 625
Nfine 0 1,270 1,640 1,917 2,017 2,245 2,349
Memory (MB) 2379 1267 640 442 442 442 442

IoU vehicle (↑) 44.0 44.1 44.0 44.0 43.7 42.5 39.1

Table 16. Sparse evaluation of our model on the nuScenes [3]
validation set at resolution 224× 480 without visibility filtering,
using different reduction factors to sample regular coarse points
on the BeV grid while adapting the kernel patch size. Backbone is
an EfficientNet-b4 [43] as in Fig. 7.

Qualitatively, it is observed that subsampling helps to
correct predictions in certain areas of uncertainty (Fig. 10).
However, if it is too high, there is a risk of missing impor-
tant regions in the BeV. This is particularly the case when
the factor is 64. Considering the trade-off between the num-
ber of points considered, and the final IoU, we have thus

selected a default subsampling factor of Sk = 16, resulting
in an IoU of 43.73 as indicated in Tab. 1.

E.4. LiDAR inference

We discuss in the paper an initialization of the coarse pass
using LiDAR points retrieved from a sweep (Fig. 7). In the
context of evaluation with a visibility filter, we demonstrate
that this approach leads to better results than the standard
approach or other sampling patterns (Tab. 17). Visually, it
can be observed that the LiDAR pattern activates more re-
gions than the standard pattern, even though the same acti-
vation threshold for anchor points is used, see Fig. 11. This
is mainly because LiDAR point locations are better candi-
dates than regular locations, which have to rely on the re-
ceptive field of features to contain local information.

Ground Truth Sk: 1, kfine: 0 Sk: 2, kfine: 3 Sk: 4, kfine: 5 Sk: 8, kfine: 7 Sk: 16, kfine: 9 Sk: 32, kfine: 13 Sk: 64, kfine: 17

Figure 10. Qualitative representation of different regular subsampling patterns according to the reduction factor Sk and with adapta-
tion of the densification patch size kfine. The first row represents the predictions, while the second row depicts the associated binary masks.
All white points outside the mask have a zero prediction. The model only considers active points in the mask.

Ground Truth Dense Subsampled pattern LiDAR pattern

Figure 11. Qualitative comparison of a subsampled pattern with a pattern initialized using LiDAR points. The LiDAR points
correspond to those from the sweep considered at the current timestep. The first row represents the predictions, while the second row
depicts the associated binary masks. All white points outside the mask have a zero prediction. The model only considers active points in
the mask.

IoU (↑) vehicle LiDAR Random Regular Dense

Npoint (fine + coarse) 5.4k 2.7k 2.7k 40k
PointBeV 44.5 42.2 43.7 44.0

Table 17. Comparison of different sub-sampling patterns,
showing that the lidar pattern leads to the best results. Models
are trained using EfficientNet-b4 with low visibility filtering.

F. Qualitative examples
We present visualizations of PointBeV vehicle occupancy
map predictions on the nuScenes validation set (without
visibility filtering) in (Fig. 12) and with various lighting
and weather conditions (nighttime, rainy weather, and clear
weather) in Fig. 13.

Camera Images
BeV Ground Truth BeV Prediction

Figure 12. Qualitative results of PointBeV’s prediction on a random sample from the nuScenes validation (not cherry-picked).
The model inputs are the six cameras displayed on the left, respectively the front-left camera, front camera, front-right camera, back-left
camera, back camera, and back-right camera. The ground truth and then the prediction are displayed.

Camera Images
BeV Ground Truth BeV Prediction

Camera Images
BeV Ground Truth BeV Prediction

Camera Images
BeV Ground Truth BeV Prediction

Figure 13. Qualitative results of PointBeV’s prediction on a nighttime, rainy and sunny sample from the nuScenes validation. The
model inputs are the six cameras displayed on the left, respectively the front-left camera, front camera, front-right camera, back-left camera,
back camera, and back-right camera. The ground truth and then the prediction are displayed.

