
Resolution Limit of Single-Photon LiDAR

Supplementary Material

Contents
6 . Proof of Theorems 1

6.1 . Axioms 1
6.2 . Proof of Theorem 1 1
6.3 . Proof of Theorem 2 2
6.4 . Proof of Theorem 3 2
6.5 . Proof of Theorem 4 2

7 . Proof of Additional Results 4
7.1 . Proof of Corollary 1 4
7.2 . Proof of Corollary 2 4
7.3 . Proof of Lemma 1 4
7.4 . Cramer Rao Lower Bound 5

8 . Auxiliary Results and Proofs 5
8.1 . Lemma about Product of Functions 5
8.2 . Lemma about Characteristic Function . . . 6
8.3 . Lemma for µ1 and F1 6
8.4 . Lemma for µ2 and F2 7

9 . Detailed Setups of Experiments 7
9.1 . Ground Truth Time-of-Arrival Function . 7
9.2 . What if we use a different τ(x)? 8

10. Unit Conversion 9

11. Sampling Procedure 10
11.1. Inverse CDF Method 10
11.2. Implementation and Demonstration 10

12. Non-zero Noise Floor 10
12.1. Maximum Likelihood Estimation 10
12.2. MSE Calculation 11
12.3. Solving the ML Estimation 12
12.4. Experimental Results 13

13. Pile-up Effects 14
13.1. Distribution 14
13.2. MLE . 14
13.3. Theoretical MSE 14

14. Dark Count 15

15. Extension to 2D 15
15.1. Bias . 15
15.2. Variance 16

16. Real 2D Experiment 17
16.1. Snapshot of Real Data 18
16.2. Pseudo Ground Truth 18

16.3. Estimating σt and α0 18
16.4. Variance Estimation via Bootstrap 19
16.5. Bias Estimation via Numerical Integration 19

17. Q&A 19

6. Proof of Theorems

In this section, we present the proofs of the theorems. To
clarify the contributions of this paper, we add comments
to each proof to highlight whether this is based on existing
theory or it is a new proof.

6.1. Axioms

We first state the three axioms for inhomogeneous Poisson
processes [5].

Definition 1. Axioms for inhomogeneous Poisson pro-
cess
• The probability of one occurrence in an infinitesimal

interval ∆t is given by

P[1,∆t] = λ(t)∆t, ∆t → 0. (31)

• The probability of more than one occurrence in ∆t
is zero for ∆t → 0. Therefore, P[0,∆t] is the com-
plement of P[1,∆t], which will give us

P[0,∆t] = 1− λ(t)∆t, ∆t → 0. (32)

• The number of occurrences in any interval is inde-
pendent of those in all other disjoint intervals.

6.2. Proof of Theorem 1

✠ Remark: This proof is adopted from Bar-David [1] with
new elaborations provided for each step.

Consider a set of time stamps −T ≤ t1 < t2 < . . . <
tM ≤ T . For each timestamp tj , we consider an infinitesi-
mal width ±∆tj/2. The probability that one and only one

photon falls in each of the intervals and none outside is

p(tM ,M)∆t1∆t2 . . .∆tM

= P[observing one and only one in each interval]

= P[0, (−T, t1 − 1
2∆t1)]

× P[1, (t1 − 1
2∆t1, t1 +

1
2∆t1)]

× P[0, (t1 + 1
2∆t1, t2 − 1

2∆t2)]

. . .

× P[1, (tM − 1
2∆tM , tM + 1

2∆tM)]

× P[0, (tM + 1
2∆tM , T)]

= P[0, (−T, t1 − 1
2∆t1)]

× λ(t1)∆t1 × P[0, (t1 + 1
2∆t1, t2 − 1

2∆t2)]

. . .

× λ(tM)∆tM × P[0, (tM + 1
2∆tM , T)]

As ∆tj → 0, the intervals merge to become (t1+ 1
2∆t1, t2−

1
2∆t2) → (t1, t2). Therefore,

P[0, (−T, t1 − 1
2∆t1)]× . . .× P[0, (tM + 1

2∆tM , T)]

= P[0, (−T, t1)]× P[0, (t1, t2)] . . .× P[0, (tM , T)]

= P[0, (−T, T)]

= exp

[
−
∫ T

−T

λ(t) dt

]
= e−Q.

Regrouping the terms, we can show that

p(tM ,M) = p(tM) = e−Q
M∏
j=1

λ(tj).

6.3. Proof of Theorem 2

✠ Remark: This proof is adopted from Bar-David [1].
Let’s assume that F (τ) is a twice differentiable function.

Then, let F1 = Ḟ (τ0), and decompose F1 as F1 = µ1 +
F ′
1, where F ′

1 is a zero-mean random variable. Similarly,
decompose F2 = F̈ (τ0) as F2 = µ2 + F ′

2. Then,

ϵ = − Ḟ (τ0)

F̈ (τ0)
= −F1

F2
= −µ1 + F ′

1

µ2 + F ′
2

.

Using Lemma 7, we know that µ1 = 0. Moreover, let’s
assume that F ′

2 ≪ µ2. We can, hence, simplify the above
as

ϵ2 =

(
F ′
1

µ2 + F ′
2

)2

=

F ′
1

µ2

 1

1 +
F ′

2

µ2

2

≈
(
F ′
1

µ2

[
1− F ′

2

µ2

])2

.

Taking the expectation will give

E[ϵ2] ≈ E[F ′2
1]

µ2
2

− 2
E[(F ′2

1 F
′

2]

µ3
2︸ ︷︷ ︸

→0

+
E[F ′2

1 F
′2
2]

µ4
2︸ ︷︷ ︸

→0

.

Using Lemma 7 and Lemma 8, and assuming that τ0 = 0
without loss of generality, it follows that

E[ϵ2] =
E[F ′2

1]

µ2
2

=

∫ T

−T
(αṡ(t))2

αs(t)+λb
dt(∫ T

−T
(αṡ(t))2

αs(t)+λb
dt
)2

=

[∫ T

−T

(αṡ(t))2

αs(t) + λb
dt

]−1

.

6.4. Proof of Theorem 3

✠ Remark: This is a new proof we make for this paper.
We consider s(x, t) = s(t − τ(x)). Using Approxima-

tion 1, we write

s(x, t) = s(t− τ(x)) = N (t | τ(x), σ2
t)

= N (t | τn + cn(x− xn), σ
2
t).

By Approximation 3, we can show that

s̃(x, t)
def
= ϕ(x)⊛ s(x, t)

= N (x | 0, σ2
x)⊛N (t | τn + cn(x− xn), σ

2
t)

(a)
= N (x | 0, σ2

x)⊛
1

cn
N
(
x
∣∣∣ t

cn
− τn

cn
+ xn,

σ2
t

c2n

)
(b)
=

1

cn
N
(
x
∣∣∣ t

cn
− τn

cn
+ xn, σ

2
n

)
= N (t | τn + cn(x− xn), σ

2
n),

where (a) is based on a simple switch between the roles of
x and t in a Gaussian distribution, and (b) is based on the
fact that the convolution of two Gaussian probability den-
sity functions is equivalent to adding two Gaussian random
variables.

If we restrict ourselves to x = xn, then we will obtain
sn(t)

def
= s̃(xn, t) = N (t | τn, σ2

n). Therefore, using the fact
that ϕ(x)⊛λb =

∫∞
−∞ ϕ(x)λbdx = λb since ϕ(x) integrates

to 1, we can show that

λn(t) = α {ϕ(x)⊛ s(x, t)} |x=xn
+ λb

= αN (t | τn, σ2
n) + λb.

6.5. Proof of Theorem 4

In proving Theorem 4, we need a few lemmas. The first
lemma is the classical bias-variance trade-off.

Lemma 2 (MSE decomposition). The MSE can be de-
composed as

MSE(τ̂ , τ)
def
= bias + var, (33)

where

bias =
∫ 1

0

(τ(x)− τ(x))
2
dx

var = E
[∫ 1

0

(τ̂(x)− τ(x))
2
dx

]
.

✠ Remark: The decomposition of the MSE into bias and
variance can be found in most of the machine learning text-
books. For completeness and in the context of our paper, we
provide the derivations here.
Proof of Lemma 2. We start with the definition of the MSE:

MSE(τ̂ , τ) def
= E

[∫ 1

0

(τ̂(x)− τ(x))2 dx

]
= E

[∫ 1

0

(τ̂(x)− τ(x) + τ(x)− τ(x))
2
dx

]
Expanding the terms, we can show that

MSE(τ̂ , τ) = E
[∫ 1

0

(τ̂(x)− τ(x))
2
dx

]
︸ ︷︷ ︸

variance

+ E
[∫ 1

0

(τ̂(x)− τ(x)) (τ(x)− τ(x)) dx

]
︸ ︷︷ ︸

=0

+

∫ 1

0

(τ(x)− τ(x))
2
dx︸ ︷︷ ︸

bias

.

The second expectation in the above is zero because
E[τ̂(x)] = τ(x) for every x according to Lemma 7.

Lemma 3 (Bias Term). Let τ(x) =
∑N−1

n=0 τnφ(Nx−
n), and let N be the number of pixels in a unit space
0 ≤ x ≤ 1. The bias is approximately

bias =
c2

12N2
, (34)

where cn = τ ′(xn) is the slope of τ at xn, and c2 =
1
N

∑N−1
n=0 c2n.

✠ Remark: This is a new proof we make for this paper.
Proof of Lemma 3

Integrating over the unit space [0, 1], we can show that∫ 1

0

(τ(x)− τ(x))
2
dx

=

∫ 1

0

(
N−1∑
n=0

τnφ(Nx− n)− τ(x)

)2

dx

=

N−1∑
n=0

∫ (n+1)/N

n/N

(τn − τ(x))
2
dx︸ ︷︷ ︸

=e2n

.

Let’s calculate the individual error e2n. Let xn be the mid-
point of n/N and (n+ 1)/N . That is,

xn =
1

2

(
n

N
+

n+ 1

N

)
=

2n+ 1

2N
.

Then, we can take the first order approximation of τ(x)
around xn:

τ(x) = τ(xn) + τ ′(xn)(x− xn).

Since τ(xn) = τn by construction, it follows that

e2n =

∫ (n+1)/N

n/N

(τn − τ(x))
2
dx

=

∫ (n+1)/N

n/N

(
τn − (τ(xn) + τ ′(xn)(x− xn))

)2
dx

=

∫ (n+1)/N

n/N

(
τn − (τn + τ ′(xn)(x− xn))

)2
dx

=

∫ (n+1)/N

n/N

(
τ ′(xn)(x− xn)

)2
dx

= [τ ′(xn)]
2 (

n+1
N − xn)

3 − (n
N − xn)

3

3
, xn =

2n+ 1

2N

=
[τ ′(xn)]

2

12N3
.

Summing over all n’s will give us∫ 1

0

(τ(x)− τ(x))
2
dx =

N−1∑
n=0

e2n =
c2

12N2
,

where c2 = 1
N

∑N−1
n=0 c2n.

Lemma 4 (Variance Term). Assume s(t) is Gaussian
and λb = 0. The variance is approximately

var =
N

α0

(
c2σ2

x + σ2
t

)
, (35)

where cn = τ ′(xn) is the slope of τ at xn, and c2 =
1
N

∑N−1
n=0 c2n.

✠ Remark: This is a new proof we make for this paper.
Proof of Lemma 4.

Firstly, we use Theorem 3 and apply it to the single-pixel
case in Theorem 2. Then, under the assumption that λb = 0,
we can follow Example 3 to show that

E[(τ̂n − τn)
2] =

σ2
n

α
=

c2nσ
2
x + σ2

t

α

=
N

α0

(
c2nσ

2
x + σ2

t

)
.

Therefore, for a unit length, it follows that

var = E
[∫ 1

0

(τ̂(x)− τ(x))
2
dx

]
= E

[
N−1∑
n=0

∫ (n+1)/N

n/N

(τ̂(x)− τ(x))
2
dx

]

=

N−1∑
n=0

∫ (n+1)/N

n/N

E
[
(τ̂(x)− τ(x))

2
]
dx

=

N−1∑
n=0

∫ (n+1)/N

n/N

E
[
(τ̂n − τn)

2
]
dx

=

N−1∑
n=0

∫ (n+1)/N

n/N

N

α0

(
c2nσ

2
x + σ2

t

)
dx

=
1

N

N−1∑
n=0

N

α0

(
c2nσ

2
x + σ2

t

)
=

N

α0

(
c2σ2

x + σ2
t

)
.

7. Proof of Additional Results

7.1. Proof of Corollary 1

✠ Remark: This proof is adopted from [1].
The probability of observing M occurrence is

p(M) =

∫ T

−T

dt1

∫ T

t1

dt2 . . .

∫ T

tM−1

dtMp(tM ,M).

The integration limit comes from the fact that the time
stamps follow the order −T ≤ t1 < t2 < . . . < tM ≤
T . The integral is equivalent to 1/M ! of the hypercube
(−T, T). Thus,

p(M) =
1

M !

∫ T

−T

dt1

∫ T

−T

dt2 . . .

∫ T

−T

dtM e−Q
M∏
j=1

λ(tj)

=
e−Q

M !

M∏
j=1

∫ T

−T

λ(tj)dtj =
e−QQM

M !
.

7.2. Proof of Corollary 2

✠ Remark: Bar-David hinted the result in [1], but the proof
was missing. We provide the proof here.

The sum of the integrals can be written as follows.

M∑
m=0

∫
ΩM

p(tM ,M) dtM

=

M∑
m=0

∫ T

−T

dt1

∫ T

t1

dt2 . . .

∫ T

tM−1

dtM p(tM ,M).

Since tM is an ordered sequence of time stamps, we can
rewrite the integration limits by taking into consideration
the M ! combinations of the orders. This will give us

M∑
m=0

∫
ΩM

p(tM ,M) dtM

=

M∑
m=0

∫ T

−T

dt1

∫ T

−T

dt2 . . .

∫ T

−T

dtM
1

M !
p(tM ,M)

=

M∑
m=0

e−Q

M !

M∏
j=1

[∫ T

−T

λ(tj)dtj

]
=

M∑
m=0

eQ

M !
QM = 1.

7.3. Proof of Lemma 1

✠ Remark: This is a new proof we make for this paper

The KL-divergence of the two distributions is

KL(φ∥ϕ) =
∫ ∞

−∞
φ(x) log

φ(x)

ϕ(x)
dx

=

∫ W
2

−W
2

− 1

W

[
logW + log

{
1√
2πσ2

e−
x2

2σ2

}]
dx

=

∫ W
2

−W
2

− logW

W
+

1

W
log(

√
2πσ2) +

x2

2σ2W
dx

= − logW + log(
√
2πσ2) +

W 2

24σ2
.

Taking the derivative with respect to σ2 will yield

d

dσ2
KL(φ∥ϕ) = 1

2σ2
− W 2

24σ4
.

Equating this to zero and rearranging terms will give us

σ2 =
W 2

12
. (36)

7.4. Cramer Rao Lower Bound

Corollary 3 (Cramer Rao Lower Bound). The
Cramer-Rao lower bound for the ML estimate τ̂ given
L(τ) is

E[(τ̂ − τ0)
2] ≥

(
−E

[
∂2L
∂τ2

])−1

=

[∫ T

−T

(αṡ(t))2

αs(t) + λb
dt

]−1

.

✠ Remark: The Cramer-Rao lower bound for single-photon
LiDAR has been previously mentioned in [4]. We provide
the proof here for completion.

Proof of Corollary 3.

Let L(τ) = log[αs(t− τ) + λb]. Then

∂L
∂τ

= − αṡ(t− τ)

αs(t− τ) + λb

∂2L
∂τ2

= −−(αs(t− τ) + λb)s̈(t− τ) + (αṡ(t− τ))2

(αs(t− τ) + λb)2

=
s̈(t− τ)

αs(t− τ) + λb
− (αṡ(t− τ))2

(αs(t− τ) + λb)2

Taking the expectation over t, we have

E
[
−∂2L
∂τ2

]
= −

∫ T

−T

∂2L
∂τ2

· [αs(t− τ) + λb]dt

= −
∫ T

−T

s̈(t− τ) dt︸ ︷︷ ︸
=0

+

∫ T

−T

(αṡ(t− τ))2

αs(t− τ) + λb
dt

=

∫ T

−T

(αṡ(t− τ))2

αs(t− τ) + λb
dt.

Without loss of generality, we set τ = 0. Taking the recip-
rocal completes the proof.

8. Auxiliary Results and Proofs

In this section, we present additional results and proofs that
are essential to the development of our theories.

8.1. Lemma about Product of Functions

Lemma 5. Consider a function f(t) and define its
product:

fπ(tM) =

M∏
j=1

f(tj). (37)

Assume tM ∼ p(tM). The expectation of fπ is

E[fπ(tM)] = e−Q+G(T), (38)

where G(T) =
∫ T

−T
f(t)λ(t)dt.

✠ Remark: This proof is adopted from Bar-David.
Proof of Lemma 5.

The expectation can be shown as follows.

E[fπ(tM)] =

∫
Ω

fπ(tM)p(tM)dtM

=

∞∑
M=0

∫
ΩM

fπ(tM)p(tM)dtM︸ ︷︷ ︸
def
=EM (fπ)

.

Substituting the definition of fπ(tM) into the expression
above, we can show that

EM (fπ) =

∫
ΩM

fπ(tM)p(tM ,M) dtM

= e−Q

∫ T

−T

dt1

∫ T

t1

dt2 . . .

∫ T

tM−1

dtM

M∏
j=1

g(tj),

where g(t) is defined as g(t) = f(t)λ(t).
Now, consider a slightly different integration

e−Q

∫ T

−T

dt1

∫ T

−T

dt2 . . .

∫ T

−T

dtM

M∏
j=1

g(tj)

= e−Q

[∫ T

−T

g(t)dt

]M
= e−QGM (T),

where G(T) =
∫ T

−T
g(t)dt. The difference between this in-

tegral and the previous integral is that the previous integral
is based −T ≤ t1 ≤ . . . ≤ tM ≤ T . To account for the
shape from this triangle to the full hypercube, we add the
M ! factors. This will give us

EM (fπ) =
eQGM (T)

M !
.

Therefore,

E[fπ(tM)] = e−Q
M∑
j=1

GM (T)

M !
= e−Q+G(T).

8.2. Lemma about Characteristic Function

Lemma 6. For the function f(t; iu) defined as, where
i =

√
−1,

f(t; iu) = exp

{
iu · αṡ(t− τn)

αs(t− τn) + λb

}
. (39)

The function G(T) =
∫ T

−T
f(t; iu)λ(t)dt has deriva-

tives

G(T)
∣∣∣
iu=0

=

∫ T

−T

λ(t) dt = Q

d

d(iu)
G(T)

∣∣∣
iu=0

=

∫ T

−T

αṡ(t− τn) dt

d2

d(iu)2
G(T)

∣∣∣
iu=0

=

∫ T

−T

(αṡ(t− τn))
2

αs(t− τn) + λb
dt

✠ Remark: Bar-David mentioned the idea but we could not
find the proof. Therefore, the proof here is new.

Proof of Lemma 6.

For the f(t; iu) defined, we can show that

d

d(iu)
f(t; iu)

=
αṡ(t− τn)

αs(t− τn) + λb
· exp

{
iu · αṡ(t− τn)

αs(t− τn) + λb

}
=

αṡ(t− τn)

αs(t− τn) + λb
· f(t; iu)

If we restrict iu = 0, then f(t; iu)|iu=0 = 1.Therefore,

dG(T)

d(iu)

∣∣∣
iu=0

=

∫ T

−T

d

d(iu)
f(t; iu) · λ(t) dt

∣∣∣
iu=0

=

∫ T

−T

f(t; iu) · αṡ(t− τn)

λ(t)
· λ(t) dt

∣∣∣
iu=0

=

∫ T

−T

αṡ(t− τn)dt = 0,

where the last equality holds whenever s(t) is a symmetric
function.

d2G(T)

d(iu)2

∣∣∣
iu=0

=

∫ T

−T

d

d(iu)
f(t; iu) · αṡ(t− τn)

λ(t)
· λ(t) dt

∣∣∣
iu=0

=

∫ T

−T

f(t; iu) ·
(
αṡ(t− τn)

λ(t)

)2

· λ(t) dt
∣∣∣
iu=0

=

∫ T

−T

(αṡ(t− τn))
2

αs(t− τn) + λb
dt.

8.3. Lemma for µ1 and F1

Lemma 7. Let F1 = Ḟ (τn), where the derivative is
taken with respect to τ . Write F1 = µ1 + F ′

1. It holds
that

µ1 = 0, E[F
′2
1] =

∫ T

−T

(αṡ(t− τn))
2

αs(t− τn) + λb
dt.

✠ Remark: Similar to the previous Lemma, Bar-David men-
tioned the idea but we could not find the proof. Therefore,
the proof here is new.
Proof of Lemma 7.

Let the characteristic function of the random variable F1

be

Φ(iu) = E

exp
ix ·

M∑
j=1

αṡ(tj − τn)

αs(tj − τn) + λb


 . (40)

Thus, by Lemma 5, we have Φ(iu) = E[fπ(tM)] =
e−Q+G(T) with fπ defined by Lemma 6.

The first moment of F1 is therefore

µ1 =
d

d(iu)
Φ(iu)

∣∣∣
iu=0

=
d

d(iu)
e−Q+G(T)

∣∣∣
iu=0

= e−Q+G(T) d

d(iu)
G(T)

∣∣∣
iu=0

= 0,

where the last equality is due to Lemma 6.
For E[F ′2

1], we can show that

E[F
′2
1] =

d2

d(iu)2
Φ(iu)

∣∣∣∣
iu=0

= e−Q d

d(iu)

[
eG(T) d

d(iu)
G(T)

]∣∣∣∣
iu=0

= e−Q

[
eG(T)

(
d

d(iu)
G(T)

)2

+ eG(T) d2

d(iu)2
G(T)

]∣∣∣∣∣
iu=0

= e−Q

[
eQ (0)

2
+ eQ

∫ T

−T

(αṡ(t− τn))
2

λ(t)
dt

]

=

∫ T

−T

(αṡ(t− τn))
2

λ(t)
dt =

∫ T

−T

(αṡ(t− τn))
2

αs(t− τn) + λb
dt.

Since the width of the pulse is much smaller than the inter-
val (−T, T), we can make τn = 0 without loss of general-
ity.

8.4. Lemma for µ2 and F2

Lemma 8. Let F2 = F̈ (τn). Write F2 = µ2 + F ′
2. We

can show that

µ2 =

∫ T

−T

(αṡ(t− τn))
2

αs(t− τn) + λb
dt,

E[F
′2
2] =

∫ T

−T

(
d

dτn

(
αṡ(t− τn)

αs(t− τn) + λb

))2

λ(t) dt.

✠ Remark: Similar to the previous Lemma, Bar-David
mentioned the idea but we could not find the proof. There-
fore, the proof here is new.
Proof of Lemma 8.

The characteristic function of F2 is

Φ(iu) = E

exp
iu ·

M∑
j=1

d

dτn

αṡ(tj − τn)

αs(tj − τn) + λb


 .

(41)
Similar to Lemma 7, we define

h(t) = exp

{
iu · d

dτn

αṡ(t− τn)

αs(t− τn) + λb

}
. (42)

Then, the function H(T) =
∫ T

−T
h(t)λ(t)dt, where λ(t) =

αs(t− τn) + λb, and its derivatives are

H(T)
∣∣∣
iu=0

=

∫ T

−T

[αs(t− τn) + λb]dt

d

d(iu)
H(T)

∣∣∣
iu=0

=

∫ T

−T

d

dτn

(
αṡ(t− τn)

αs(t− τn) + λb

)
λ(t) dt

d2

d(iu)2
H(T)

∣∣∣
iu=0

=

∫ T

−T

(
d

dτn

(
αṡ(t− τn)

αs(t− τn) + λb

))2

λ(t) dt

With some simplifications, we can show that

µ2 =
d

d(iu)
H(T)

∣∣∣
iu=0

=

∫ T

−T

d

dτn

(
αṡ(t− τn)

αs(t− τn) + λb

)
λ(t) dt

=

∫ T

−T

(
−λ(t)αs̈(t− τn)− αṡ(t− τn)λ̇(t)

λ(t)2

)
λ(t) dt

= −
∫ T

−T

αs̈(t) dt︸ ︷︷ ︸
=0

+

∫ T

−T

(αṡ(t− τn))
2

αs(t− τn) + λb
dt.

Therefore,

µ2 =

∫ T

−T

(αṡ(t− τn))
2

αs(t− τn) + λb
dt.

Similarly, we can show that

E[F
′2
2] =

d2

d(iu)2
Φ(iu)

∣∣∣∣
iu=0

= e−Q

[
eH(T)

(
d

d(iu)
H(T)

)2

+ eH(T) d2

d(iu)2
H(T)

]∣∣∣∣∣
iu=0

=

(∫ T

−T

(αṡ(t− τn))
2

αs(t− τn) + λb
dt

)2

+

∫ T

−T

(
d

dτn

(
αṡ(t− τn)

αs(t− τn) + λb

))2 (
αs(t− τn) + λb

)
dt.

Subtracting the mean square will give us

E[F
′2
2] = E[F 2

2]− µ2
2

=

∫ T

−T

(
d

dτn

(
αṡ(t− τn)

αs(t− τn) + λb

))2 (
αs(t− τn) + λb

)
dt.

9. Detailed Setups of Experiments
For the experiments we presented in the main text, the pa-
rameters are configured as Table 1. The parameters here are
unit-free in the sense they are picked to elaborate the theory.

Table 1. Parameters used in 1D experiments

N number of pixels
x spatial coordinate 0 ≤ x ≤ 1
t temporal duration 0 ≤ t ≤ 10
∆N width of each pixel 1/N
∆x spatial grid spacing 1/2048
∆t temporal grid spacing 1/256
σt pulse width 0.5
α0 overall scene flux 10000
λb noise floor 0
σx spatial Gaussian radius 1/(

√
12N)

cn nth pixel of τ ′(x) use gradient

9.1. Ground Truth Time-of-Arrival Function

The true time of arrival function τ(x) can be any function
defined on 0 ≤ x ≤ 1. For example, in the main text, we
consider a two-step scene with a smooth transition. There-
fore, we can pick a sigmoid function of the following form.

τ(x) =
4

1 + e−20(x−0.5)
+ 4, (43)

The shape for this particular model is shown in Fig. 11 be-
low. We stress that this is just one of the many models we
can pick.

To compute the gradient τ ′(x), the computationally effi-
cient way is to perform finite difference instead of the ana-
lytic form. In MATLAB, this can be done using the com-
mand gradient.

0 0.2 0.4 0.6 0.8 1

x, spatial coordinate in [0,1]

0

2

4

6

8

10

12

(x
),

 t
ru

e
 t

im
e

 o
f

a
rr

iv
a

l

Figure 11. The ground truth time of arrival function τ(x) as a
function of the coordinate 0 ≤ x ≤ 1.

tau = 4./(1+exp(-20*(x-0.5)))+4;
tau_slope = gradient(tau)/dx;

The division by dx at the end is a reflection of the finite
difference operation. For example, at xk, the true gradient
is

τ ′(xk) = lim
∆x→0

τ(xk +∆x)− τ(xk)

∆x

≈ τ(xk+1)− τ(xk)

∆x
.

Since finite difference gradient only computes
τ(xk+1) − τ(xk), we need to divide the result by ∆x to
compensate for the spatial interval.

9.2. What if we use a different τ(x)?

A critical observation of our theory is that the MSE can be
decomposed into bias and variance. The variance has some
subtle but important dependency on the shape of τ , but the
bias term will experience more impact.

According to Lemma 3, the bias can be approximated by

bias =
∫ 1

0

[τ(x)− τ(x)]2dx ≈ c2

12N2
, (44)

where c2 = 1
N

∑N−1
n=0 c2n, with cn = τ ′(xn) being the gra-

dient of τ . Therefore, as τ changes, c2 will change accord-
ingly. Figure 12 illustrates two examples. In the same fig-
ure, we also plot the theoretically predicted bias and the
simulated result. When τ(x) is relatively smooth, the the-
ory has an excellent match with the simulation.

Limitations. With no surprise, the piecewise constant
approximation has limitations. (1) When the function τ(x)
is intrinsically discontinuous, the theory will not be able to

0 0.5 1

x, spatial coordinate in [0,1]

0

2

4

6

8

10

12

(x
),

 t
ru

e
 t

im
e
 o

f
a
rr

iv
a
l

0 0.5 1

x, spatial coordinate in [0,1]

0

2

4

6

8

10

12

(x
),

 t
ru

e
 t

im
e
 o

f
a
rr

iv
a
l

0 100 200 300

N

10
-4

10
-3

10
-2

10
-1

B
ia

s

Simulated Bias

Theoretical Bias

0 100 200 300

N

10
-4

10
-3

10
-2

10
-1

10
0

B
ia

s

Simulated Bias

Theoretical Bias

Figure 12. τ(x) and the bias.

keep track of the trend. (2) When the function τ(x) is noisy,
then the gradient will be overestimated. Both will lead to
degradation of the bias estimation, as illustrated in Fig. 13.

0 0.5 1

x, spatial coordinate in [0,1]

0

2

4

6

8

10

12

(x
),

 t
ru

e
 t

im
e
 o

f
a
rr

iv
a
l

0 0.5 1

x, spatial coordinate in [0,1]

0

2

4

6

8

10

12

(x
),

 t
ru

e
 t

im
e
 o

f
a
rr

iv
a
l

0 100 200 300

N

10
-3

10
-2

10
-1

10
0

10
1

B
ia

s

Simulated Bias

Theoretical Bias

0 100 200 300

N

10
-3

10
-2

10
-1

10
0

10
1

B
ia

s

Simulated Bias

Theoretical Bias

Figure 13. Limitations of the approximations we presented in this
paper. In the presence of discontinuous edges, and/or in the pres-
ence of noise, the performance of the theoretical prediction de-
grades.

Not all limitations can be analytically mitigated. For ex-

ample, mitigating the discontinuity requires us to know the
location of the discontinuous points. In practice, the likely
solution is to numerically integrate the error. However, we
will not be able to retain a clean, interpretable, and elegant
formula.

For the noise problem, we can model the true time of
arrival function as

τ(x) = τ0(x) + η(x),

where η(x) is a random process denoting the noise, e.g.,
η(x) ∼ N (0, σ2

e). In this case, the bias will become

bias =
N−1∑
n=0

∫ n+1
N

n
N

[τ ′(xn)(x− xn) + e(x)]2dx.

With some calculations, we can show that

bias =
c2

12N2
+ σ2

e ,

where c2 = 1
N

∑N−1
n=0 c2n, with cn = τ ′0(xn) being the slope

of the clean signal τ0(x). Therefore, if we are given the
noisy time of arrival τ(x), we first need to recover the clean
τ0(x) so that we can estimate the correct c2. Then, the noise
variance σ2

e is added to compensate for the noise term. The
correction can be visualized in Fig. 14.

0 0.5 1

x, spatial coordinate in [0,1]

0

2

4

6

8

10

12

(x
),

 t
ru

e
 t

im
e
 o

f
a
rr

iv
a
l

0 100 200 300

N

10
-3

10
-2

10
-1

10
0

B
ia

s

Simulated Bias

Original Theory

Updated Theory

Figure 14. When the true time of arrival is noise, it is possible to
obtain a better bias estimate by compensating for the noise. How-
ever, this is rather an oracle scenario because in practice, we never
know the true noise-free τ(x) and we never know the probability
distribution of noise.

10. Unit Conversion
For our theoretical analysis to match a realistic sensor, a
conversion between the size of a physical pixel and the size
of a point in the numerical grid needs to be established. In
what follows, we present a specific example with some spe-
cific numbers. These can be easily translated to other con-
figurations.

Suppose that the overall size of the SPAD array is 10mm
as shown in Fig. 15 below. This 10mm would correspond

to 1 unit space. Suppose that we use 1024 points in the
numerical grid to measure the array. Then, the width of
each pixel is

∆x
def
= 1 pixel =

10mm
1024

= 9.76um =
1

1024
unit space.

For this paper’s analysis, let’s assume that we group 32
points (for example) as one super-pixel. The width of each
super-pixel is therefore

1 super-pixel = 32 pixels = 312.5um =
32

1024
unit space.

Now, if we want to use a Gaussian to approximate the
boxcar kernel, then the standard deviation of the Gaussian
should be

σx =
1 super-pixel√

12

= 9.2372 pixels = 90.21um =
32

1024
√
12

unit space.

Figure 15. Conversion between the physical units to the number
of grid points used on a computer.

For the temporal axis, we take a similar approach. Sup-
pose that the total duration of the measurement is 100ns,
and we use 2048 time points to measure the total duration.
Then, each time point would correspond to

∆t = 1 time point =
100ns
2048

= 0.048ns.

A typical pulse has a width of around 2ns-6ns. So, suppose
that we define the pulse standard deviation as σt = 20 time
points, then

σt = 0.976ns = 20 time points.

Since 6σt of a Gaussian can capture 99% of the energy, we
can safely say that the width of the pulse is around

pulse width = 6σt = 120 time points = 5.86ns,

which is reasonably inside the 2ns-6ns range.

11. Sampling Procedure
In the main text, we outlined a procedure to generate time
stamps according to a Gaussian pulse. This section dis-
cusses how to extend the idea to arbitrary pulse shapes.

11.1. Inverse CDF Method

When the pulse λ(t) has a completely arbitrary shape and
when the noise floor is not a constant, we will not be able
to draw samples from distributions with known formulae.
In this case, the sampling can be done using the inverse cu-
mulative distribution function (inverse CDF) technique [2,
Ch.4.9].

The concept of sampling from a known PDF is to lever-
age the cumulative distribution function (CDF) and a uni-
form random variable. A classical result shows the follow-
ing. Suppose that there is a random variable X generated
from a distribution with a CDF FX . If U ∼ Uniform[0, 1],
and if we send U to the inverse CDF F−1

X , then the trans-
formed random variable F−1

X (U) will follow the distribu-
tion FX .

The specific steps to perform the inverse CDF are as fol-
lows.
• Step 1: Compute the CDF Λ(t) =

∫ t

−∞ λ(r)dr. Assum-
ing that Λ(t) is invertible, compute the inverse mapping
Λ−1. To obtain Λ−1(p) for a given p, we numerically
build a lookup table.

• Step 2: Compute the number of samples M ∼
Poisson(Q). Then, generate random samples by send-
ing uniform random variables: tj = Λ−1(Uj), where
Uj ∼ Uniform[0, 1], and j = 1, . . . ,M . Then {tj}Mj=1

will follow the probability distribution λ(t).

11.2. Implementation and Demonstration

In terms of implementation, we can use the following MAT-
LAB code. Suppose that we are given the received pulse
λ(t) = αs(t − τ) + λb. Then, we can integrate λ(t)

to obtain the CDF Λ(t) =
∫ t

−∞ λ(r)dr. On a computer,
the command cumsum will serve the purpose of generat-
ing the CDF. Once the CDF is numerically determined, we
send M uniform random variables to Λ−1. The inversion
is performed numerically by finding the closest tj such that
tj = Λ−1(p) can give Λ(tj) = p, where p is the uniform
random variable.

function time_stamps = ...
generate_time_stamps(lambda,t,M)

c = cumsum(lambda)/sum(lambda);
p = rand(1,M);
c = repmat(c(:),[1,M]);
[˜,pos] = min(abs(c-p));
time_stamps = t(pos);

end

Fig. 16 shows a demonstration where we generate M
time stamps. The underlying pulse shape is Gaussian, but
we also assume a nonlinear noise floor. Specifically, the
noise floor mimics a scattering medium which is modeled
by a Gamma distribution.

0 1 2 3 4 5 6 7 8 9 10

time, t

0

0.1

0.2

0.3

0.4

0.5

0.6

p
 =

(t

)

samples

true distribution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

probability, p

0

2

4

6

8

10

-1
(p

)

Figure 16. [Top] Random samples tM drawn from a pulse λ(t)
which consists of a non-uniform noise floor and a Gaussian pulse.
[Bottom] The inverse CDF Λ−1(p) is used to generate the sam-
ples from a uniform distribution. Λ−1(p) is generated numerically
from the known equation λ(t).

s1 = 0.2*pdf(’normal’, t, tau, sigma_t);
s2 = 0.2*pdf(’gamma’, t, 2, 1);
lambda_b = 0.02*ones(1,length(t));
lambda = s1+s2+lambda_b;

lambda_pdf = lambda/sum(lambda*dt);
lambda_cdf = cumsum(lambda/sum(lambda));
dp = 1/500;
p = 0:dp:1-dp;
c = repmat(lambda_cdf(:),[1,length(p)]);
[˜,pos] = min(abs(c-p));
lambda_icdf = t(pos);

12. Non-zero Noise Floor
The goal of the main text is to derive a simple and informa-
tive MSE equation. This is achieved by assuming that the
pulse is Gaussian and there is no noise. In this section, we
discuss how the theoretical results can be derived for arbi-
trary pulses, by means of a numerical scheme.

12.1. Maximum Likelihood Estimation

Assuming that the transmitted pulse is s(t) and the received
pulse is λ(x, t) = αs(t− τ(x))+λb. Here, we assume that

s(t) can take an arbitrary shape and λb > 0. We also assume
that there is a spatial kernel ϕ(x) which will be applied to
λ(x, t) to yield the resulting space-time function λ̃(x, t):

λ̃(x, t) = ϕ(x)⊛ λ(x, t).

The convolution ⊛ can be implemented numerically. In
MATLAB, we can use the command imfilter:

lambda = alpha*s + lambda_b
h = ones(dN,1)/dN;
lambda_tilde = imfilter(lambda, h, ...

replicate’);

Following the same derivations as the main text, we let
xn = (2n+1)/(2N) be the mid point of each spatial inter-
val and define the effective pulse λ̃n(t) as

λ̃n(t; τn) = λ̃(xn, t; τn),

where we emphasize that λ̃n has an underlying parameter
τn which needs to be estimated. Then, the time of arrivals
tM = [t1, . . . , tM] will follow the distribution specified by
the effective return pulse λ̃n(t).

The questions we need to ask now are (1). how to
estimate the time of arrival τ̂ , (2). what is the variance
E[(τ̂n − τn)

2]?
For the purpose of deriving theoretical bounds, the esti-

mator we use is the maximum likelihood estimator. The ML
estimator is the one that maximizes the likelihood function.
In our case, it is

τ̂n = argmax
τn

M∑
j=1

log λ̃n(tj ; τn)︸ ︷︷ ︸
L(τn)

, (45)

The shape of the likelihood function L(τn) as a function
of the parameter τn is shown in Fig. 17, for a typical Gaus-
sian pulse with a non-zero noise floor. The likelihood func-
tion has a clear maximum (minimum if we take the negative
log likelihood) around the true parameter. For the specific
example shown in Fig. 17, we use the following configura-
tions: α = 100, λb = 30, s(t, τ0) = N (t | τ0, σ2

t) where
τ0 = 5 and σt = 0.5. We randomly generate K = 100

random vectors t
(k)
M for k = 1, . . . ,K. We plot the nega-

tive log-likelihood L(τn | t(k)M) as a function of the param-
eter τn. The negative log-likelihood functions are random
because t

(k)
M are random. We take the expectation of these

K = 100 random negative log-likelihood functions to visu-
alize the mean function.

An equivalent alternative approach is to perform the es-
timation by solving a zero-finding problem. Taking the
derivative of L with respect to τn, we can show that the

solution τ̂n must satisfy the equation

dL
dτn

∣∣∣∣
τn=τ̂n

=

M∑
j=1

˙̃
λn(tj ; τn)

λ̃n(tj ; τn)

∣∣∣∣∣∣
τn=τ̂n

= 0. (46)

Then, the maximum likelihood estimate τ̂n is determined
by finding the zero-crossing of the derivative such that
L̇(τ̂n) = 0.

Example 4. Suppose that λ̃n(t; τn) = αs(t−τn)+λb,
then the likelihood function is

L(τn) =
M∑
j=1

log
{
αs(tj − τn) + λb

}
.

The derivative of the likelihood is

dL
dτn

= −
M∑
j=1

αs(tj − τn)

αs(tj − τn) + λb
.

The shape of the likelihood derivative can be seen in
Fig. 18, for a typical example outlined in the description
of Fig. 17. The maximum likelihood estimate is the zero-
crossing of the derivative. We emphasize that for arbitrary
pulse shape and a non-zero floor noise, neither the zero-
finding approach nor the matched filter approach would
have an analytic solution. We will discuss the numerical
implementation shortly.

12.2. MSE Calculation

Given the effective return pulse λ̃n(t), the MSE follows
from Theorem 2. To make our notations consistent, we as-

0 2 4 6 8 10

time, t

-1800

-1700

-1600

-1500

-1400

-1300

-1200

-1100
Negative Log-Likelihood

Mean

True

Figure 17. The shape of the negative log-likelihood function L(τ)
as a function of the unknown parameter τ .

0 2 4 6 8 10

time, t

-150

-100

-50

0

50

100

150

Likelihood Derivative

Mean

True

Figure 18. The shape of the negative log-likelihood function’s
derivative d

dτ
L(τ) as a function of the unknown parameter τ .

sume that λ̃n(t) takes the form

λ̃n(t) = αsn(t− τn) + λb, (47)

for some function sn(t). This assumption is valid whenever
α and λb are independent of x so that any spatial convolu-
tion applied to construct λ̃(t) will not affect α. Under this
notation, we follow Theorem 2 and write the variance of the
estimator

E[(τ̂n − τn)
2] =

[∫ T

−T

(αṡn(t))
2

αsn(t) + λb
dt

]−1

, (48)

where ṡn(t) is the derivative of sn(t) with respect to t.
For arbitrary pulse shape, sn(t) does not have any ana-

lytic expression, so does ṡn(t). Nevertheless, the integra-
tion in Eq. (49) can still be performed numerically. The
MATLAB code below shows how we can do it numerically.

tau = 4./(1+exp(-20*(x-0.5)))+4;
tau_slope = gradient(tau)/dx;
for n=1:N
c(n) = mean(tau_slope(dN*(n-1)+[1:dN]));
s_dot(n,:) = gradient(s(n,:))/dt;
var_n(n) = 1/sum(((alpha*s_dot(n,:)).ˆ2) ...

./(alpha*s(n,:)+lambda_b)*dt);
end
var_theory = mean(var_n);
bias_theory = mean((c.ˆ2)/(12*Nˆ2));
mse_theory = bias_theory + var_theory;

With Eq. (48) defined, the overall MSE as a function of
the number of pixels is as follows.

Theorem 5. For arbitrary pulse shape and noise floor,
the MSE takes the form

MSE =
c2

12N2
+

N

α0
E[(τ̂n − τn)

2]. (49)

Here, we use the fact that E[(τ̂n − τn)
2] has the same

value for all n so it does not matter which n we use to cal-
culate the variance. Although Eq. (49) is no longer a closed-
form expression, it still preserves the shape of the resolution
limit where the MSE decays quadratically with respect to
1/N2 and increases linearly with respect to N .

12.3. Solving the ML Estimation

In this subsection, we explain how to implement the maxi-
mum likelihood estimation for an arbitrary pulse and noise
floor. There are three ways to do this.
Approach 1: Gradient-based Likelihood Maximization.
For pulses with a known analytic expression, the most
straightforward approach is to perform gradient descent
with the gradient d

dτL:

τ (k+1) = τ (k) − γ(k) d

dτ
L(τ (k)),

for some step size γ(k). Most numerical software such as
MATLAB has built-in optimization packages to accomplish
this step. For example, using fminunc, we will be able to
find the maximum of the likelihood function.

The example below assumes a Gaussian pulse so that we
have a closed-form expression for the likelihood function.

function L = myL(tau, tj, ...
sigma_t, alpha, lambda_b)

L = -sum(log(alpha * ...
1/sqrt(2*pi*sigma_tˆ2) * ...

* exp(-(tj-tau).ˆ2/(2*sigma_tˆ2)) + ...
+ lambda_b));

To solve the actual maximization we do

fun = @(tau) myL(tau, tj, ...
sigma_t, alpha, lambda_b);

tau_hat = fminunc(myL, tau0, option);

where tau0 is the initial guess. For the purpose of de-
riving the “oracle” maximum likelihood estimate (so that
we are not penalized by having a bad algorithm), we use
the ground truth τ0 as the initial guess. Readers may worry
that this would return us the ground truth τ0 as the maxi-
mum likelihood estimate, i.e., τ̂ = τ0. We note that this
will never happen because the likelihood L needs to fit the
measured time stamps tM and so L is a random function.
Since L is a random function, the maximum location is a
random variable too. Therefore, while the expected value
of the estimate τ̂ is the true τ0, for a particular realization τ̂
will never be the same as τ0.
Approach 2: Search-based Likelihood Maximization.
For arbitrary pulse shape, the gradient-based approach is
difficult to implement because the pulse s(t− τ) is numer-
ically a different function when we use a different τ . The
viable approach, as we mentioned in the previous subsec-
tion, is to run a matched filter. A matched filter requires

us to shift the known pulse to the left or to the right until
we see the best fit to the data. On computers, we need to
perform two steps:
• Given a current estimate τ and a perturbation ∆τ , trans-

late it to the time index of the numerical array λ̃n(t; τ).
• Shift the index based on the amount corresponding to ∆τ ,

and calculate λ̃n(t; τ +∆τ).
In MATLAB, the shifting operation can be implemented

using the commands below.

function L = myL(tau, tj, lambda_bar_n, ...
t, tau0)

lengthT = length(t);
[˜,pos_new] = min(abs(t-tau));
[˜,pos_ini] = min(abs(t-tau0));
lambda1_pad = [lambda_bar_n(1)...

*ones(1,lengthT), ...
lambda_bar_n, ...
lambda_bar_n(end) ...

*ones(1,lengthT)];
lambda2_pad = circshift(...

lambda1_pad, ...
pos_new-pos_ini);

lambda2 = lambda2_pad(...
lengthT+1:2*lengthT);

L = -sum(log(interp1(t, ...
lambda2, tj, ’spline’)));

The padding is a band-aid for a MATLAB specific com-
mand circshift which circularly shifts the indices. If
we do not pad the array appropriately, a pulse located near
the end of the time axis will cause erroneous values to the
likelihood function after they get circularly flipped to the
beginning of time.

Because of the shifting operations defined above, the
function call is significantly harder for automatic differenti-
ation unless we customize the step size. The reason is that
if the default step size is smaller than the temporal grid we
used to define the pulse, two adjacent indices will remain
the same. Thus the gradient will be zero. A workaround so-
lution is to go with a non-gradient optimization. For MAT-
LAB, we can use the package fminsearch.

fun = @(tau) myL(tau, tj, lambda_n, t, tau0);
tau_hat = fminsearch(fun, t0, option);

Approach 3: Zero-finding of the Likelihood Gradient.
The third approach we can use is to directly solve for the
maximum likelihood solution. Recall from Eq. (46) that
the maximum likelihood estimate must be the zero-crossing
point of Eq. (46), we can directly implement the derivative
as a function call such as the example below.

function L = myL_dt(tau, tj, sigma_t, ...
alpha, lambda_b)

my_s = alpha ...

* (1/sqrt(2*pi*sigma_tˆ2)) ...

* exp(-(tj-tau).ˆ2/(2*sigma_tˆ2)) ...
+ lambda_b;

my_s_dot= -alpha*(1/sqrt(2*pi*sigma_tˆ2)) ...

* exp(-(tj-tau).ˆ2/(2*sigma_tˆ2)) ...
.* ((tj-tau)./(sigma_tˆ2));

L = sum(my_s_dot./my_s);

Then, we can use fzero to find the zero-crossing point.

fun = @(tau) myL_dt(tau, tj, sigma_t, ...
alpha, lambda_b);

tau_hat= fzero(fun,tau0);

Which approach is faster? Since the goal of this paper
is not to provide an algorithm, we skip a formal complex-
ity analysis of the methods. To give readers a rough idea
of the comparison between the three approaches, on a typ-
ical experiment using the same machine, the runtime is as
follows.

Method Command Runtime
1 Gradient descent fminunc 0.064 sec
2 Matched filter fminsearch 0.034 sec
3 Zero crossing fzero 0.016 sec

We remark that all three methods give nearly identical
solutions up to the precision of the numerical grid we set.

12.4. Experimental Results

To convince readers that Eq. (49) can be numerically imple-
mented and matches with simulation, we show in Fig. 19
the comparison between the simulation and the theoretical
prediction for a range of λb values. As is evident from the
plot, the theoretical prediction matches very well with the
simulation.

0 50 100 150 200 250 300

N, number of pixels

10
-2

10
-1

M
S

E

b
 = 0

b
 = 100

b
 = 500

b
 = 1000

b
 = 2000

Figure 19. Excellent match between the theoretical bound and the
simulation for various levels of ambient noise.

As we have demonstrated in this example, it is some-
times possible to numerically compute the bias and variance
so that the theory will match with the simulation. However,
by doing so, we will no longer be able to write down the
resolution limit in a simple and interpretable closed-form

expression. This is not a deficiency of our theory, it is just a
sacrifice of clarity and interpretability in exchange for better
theoretical precision.

13. Pile-up Effects
Pile up effects refer to the situation where the photo detector
responds earlier than the actual arrival of the pulse signal,
typically due to the presence of a strong background.

13.1. Distribution

For simplicity, we model the pile up effect as an exponen-
tially decaying distribution in the background, that is,

λ(x, t) = αs(t− τ(x)) + βλp(t) + λb, (50)

where λp(t) = γe−γt is an exponential function parameter-
ized by the reflected laser event rate γ, and the background
event rate λb [6]. In this case, the sampling of the time
stamps will follow from three steps:
• Draw Ms = Poisson(α) samples. The distribution of

these Ms samples is the shape of the pulse s(x, t). The
parameter α specifies the average number of incident sig-
nal photons.

• Draw Mp = Poisson(βγ) samples. These Mp samples
follow the distribution Exponential(γ) (whose mean is
1/γ). The parameter βγ specifies the average number of
pile-up photons (coming from the background).

• Draw Mb = Poisson(λbT) samples, assuming that 0 ≤
t ≤ T . These Mb samples follow the distribution
Uniform(λbT).

An example of the time stamp histogram is shown in
Fig. 20.

0 1 2 3 4 5 6 7 8 9 10

time, t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p
 =

(t

)

samples

true distribution

Figure 20. Pile up effect can be modeled as an exponential decay-
ing distribution. Added to the signal pulse s(t− τ), pile up effect
makes the ML estimation of the true delay significantly harder.

13.2. MLE

The maximum likelihood estimation in the presence of the
pile up effect needs a separation of background and signal.
Because of the simplified model we choose (for the purpose

of theoretical illustration), we can exploit the oracle knowl-
edge we know about the pile up and background. Given
λ(x, t), we know that the binning is such that

λn(t) =

∫ n+1
N

n
N

λ(x, t)dx

= α

∫ n+1
N

n
N

s(t− τ(x))dx︸ ︷︷ ︸
=sn(t−τn)

+

∫ n+1
N

n
N

[βλp(t) + λb]dx

= αsn(t− τn) +
βλp(t) + λb

N
,

Where we approximate the integral by a simplified function
sn(t) delayed by a time constant τn.

Given this decomposition of λn(t) as the signal sn(t)
and the noise part βλp(t) + λb, we use Theorem 2 to esti-
mate the variance of the nth pixel:

E[(τ̂n − τn)
2] =

∫ T

−T

[αṡn(t)]
2

λn(t)
dt.

This integration needs to be evaluated numerically.
In terms of simulation, we need to run the ML estima-

tion. The ML estimation requires us to search for an opti-
mal τn such that the candidate distribution matches with the
measurement. To this end, we follow the procedure outlined
in Sec. 12.3 to numerically run a search scheme to pick up
the ML estimate.

13.3. Theoretical MSE

A comparison between the simulated MSE and the theoreti-
cally predicted MSE is shown in Fig. 21. For this particular
example, we set α = 1× 104, β = 1× 105, and λb = 100.
The pile up distribution has a constant γ = 4. Again, we
emphasize that these units are unit-free, in the sense they
are chosen to illustrate the validity of the theorem rather
than matching any particular real sensor.

As we can see in Fig. 21, the theoretical prediction
matches extremely well with the simulated MSE. The small
deviation towards a larger N is due to the fact that the ML
estimation faces difficulty when the total number of sam-
ples is few. As an example, when N = 256, the number of
samples per pixel is around 400 whereas when N = 8, the
number of pixels is around 28,000. When there is no pile
up noise, the variance of ML estimate is basically limited by
the number of samples. But in the presence of complicated
noise (such as pile up), the ML estimation procedure has
limitations where it cannot differentiate signal from noise.
Therefore, when the number of samples is few, the simu-
lation performance will be worse than what the theory pre-
dicts. Nevertheless, Fig. 21 still shows a high degree of
match between the theory and the simulation.

0 50 100 150 200 250 300

N, number of pixels

10
-3

10
-2

10
-1

M
S

E

Infeasible

Simulated MSE (1D)

Theoretical MSE (1D)

Figure 21. MSE comparison in the presence of pile up. The theo-
retically predicted MSE has a very good match with the simulated
MSE.

14. Dark Count
The model we presented in the main text does not consider
dark count. In this section, we briefly discuss how it can be
included.

Dark count is a type of sensor noise caused by the ran-
dom generation of electrons in the depletion region. These
random electrons are present even when there is no photo-
electric event. Therefore, one way to model dark count is
to treat it as a uniform noise floor that does not change over
time and does not depend on the scene flux. However, dark
counts scale with the sensing area. So, if there are N pixels
and if we assume that the sensing area scales linearly with
N , then the dark counts will be reduced by N times on aver-
age. Therefore, a simple model in the context of this paper
is to write

λ(t) =
α

N
s(t− τ) +

λb

N
+

λdark

N
. (51)

Because of this simple addition to the background, we
can treat λdark as part of the background noise. In a typ-
ical scenario when the dark count rate is in the order 10
per second while a SPAD can count up to 1 million pho-
tons per second (e.g., ThorLab’s single-photon detectors),
the impact of dark current is not visible unless we operate it
in extremely low-light.

15. Extension to 2D
In this section, we briefly summarize how the results can be
extended to 2D. We will derive the bias and the variance.

15.1. Bias

For the bias term, in 2D, we need to consider a 2D coordi-
nate x ∈ [0, 1] × [0, 1]. The time of arrival function τ is

denoted as τ(x). The average function τ(x) is

τ(x) =

M−1∑
m=0

N−1∑
n=0

τm,nφ(Mx−m)φ(Ny − n),

Where τm,n is the (m,n)th value defined as

τm,n =

∫ m+1
M

m
M

∫ n+1
N

n
N

τ(x, y) dx dy.

The derivative of the time of arrival function, in the 2D
case, will become the gradient. This means that

∇xτ(x) =

[
∂τ

∂x
,
∂τ

∂y

]T
.

For notational simplicity, we write ∇xτ(x) = c =
[cx, cy]T . If we are interested in the gradient of the (m,n)th
pixel, we write

cm,n = [cxm,n, c
y
m,n]

T = ∇xτ(xm,n).

The magnitude square of the gradient is denoted as
∥cm,n∥2 = (cxm,n)

2 + (cym,n)
2, and the overall gradient

summed over all the pixels is

∥c∥2 =
1

MN

M−1∑
m=0

N−1∑
n=0

∥cm,n∥2 ≈
∫ 1

0

∫ 1

0

∥∇xτ(x)∥2 dx,

where the last approximation holds by assuming that (m,n)
covers the unit squares.

The main result for the bias term in the 2D case is sum-
marized in the lemma below.

Lemma 9. Let τ(x) be a 2D time of arrival function
over the unit square x ∈ [0, 1]×[0, 1]. Suppose that we
use M ×N pixels to approximate the unit square, and
for simplicity assume that M = N . If we approximate
τ(x) using a piecewise constant function τ(x), the bias
is given by

Bias =
∥c∥2

12N2
. (52)

Proof of Lemma 9.
We start with the definition of the bias:

Bias =
∫ 1

0

∫ 1

0

(τ(x)− τ(x))
2
dx

=

M−1∑
m=0

N−1∑
n=0

∫ m+1
M

m
M

∫ n+1
N

n
N

(τm,n − τ(x, y))
2
dx dy︸ ︷︷ ︸

=e2m,n

.

Let xm,n be the mid-point such that

xm,n =

[
2m+ 1

2M
,
2n+ 1

2N

]
.

We can approximate the first order approximation to τ(x):

τ(x) = τ(xm,n) + cTm,n(x− xm,n),

where cm,n = ∇τ(xm,n) is the gradient. Then, the error is

e2m,n =

∫ m+1
M

m
M

∫ n+1
N

n
N

(τm,n − τ(x))
2
dx

=

∫ m+1
M

m
M

∫ n+1
N

n
N

(
∇τ(xm,n)

T (x− xm,n)
)2

dx

=
[
cxm,n

]2 1

12M3N
+
[
cym,n

]2 1

12N3M
.

Assuming M = N , the above is simplified to

e2m,n =

[
cxm,n

]2
+
[
cym,n

]2
12N4

=
∥cm,n∥2

12N4
.

Summing over all (m,n)’s will give us

Bias =
∫ 1

0

∫ 1

0

(τ(x)− τ(x))
2
dx

=

N−1∑
n=0

N−1∑
m=0

∥cm,n∥2

12N4
=

∥c∥2

12N2
.

Visualization of the Bias. A visualization of the bias can
be seen in Fig. 22. In this example, we use a real depth map
as the ground truth τ(x). We scale the depth map so that the
maximum value is 20, and the minimum value is 10. The
full resolution is 512× 512. To reduce the discontinuity of
the depth map at object boundaries, we apply a spatial low-
pass filter to smooth out the edges. The estimated gradient
magnitude is ∥c∥2 =

∫ 1

0
∇xτ(x)dx = 1.42 × 103. We

consider four different resolutions 8× 8, 16× 16, 32× 32,
and 128 × 128. For each resolution, we use the equation
outlined in Lemma 9 to calculate the theoretically predicted
bias. We compare this predicted bias with the simulation.
As we can see from Fig. 22, the theoretical prediction of-
fers an excellent match with the simulation.

15.2. Variance

For the variance term, we note that the derivation follows
similarly to the 1D case:

Var = E
[∫ 1

0

∫ 1

0

(τ̂(x)− τ(x))
2
dx

]
= E

[
M−1∑
m=0

N−1∑
n=0

∫ m+1
M

m
M

∫ n+1
N

n
N

(τ̂(x)− τ(x))
2
dx

]

=

M−1∑
m=0

N−1∑
n=0

∫ m+1
M

m
M

∫ n+1
N

n
N

E
[
(τ̂m,n − τm,n)

2
]
dx.

0 100 200 300 400 500 600

N

10
-4

10
-2

10
0

B
ia

s

Simulated Bias (2D)

Theoretical Bias (2D)

Figure 22. Visualization of the bias in 2D. The full resolution of
the depth map is 512 × 512. We consider multiple resolutions to
study the effect of the bias. This plot highlights the excellent match
between the theoretical prediction and the simulation results.

Therefore, as long as we can calculate E
[
(τ̂m,n − τm,n)

2
]
,

we will be able to determine the variance.
Based on the arguments we described before stating the

lemma, we shall focus on deriving the variance for each
individual pixel. To this end, we need to derive the effective
return pulse λm,n(x, t). Following the steps of the proof
of Theorem 3, the critical step is the convolution of a 2D
spatial Gaussian and a 1D temporal Gaussian

2D spatial Gaussian = N (x | 0, σ2
sI)

1D temporal Gaussian = N (t | τ0 + cT0 (x− x0), σ
2
t).

Here, σs = 1/(
√
12N) is the spatial radius of the 2D Gaus-

sian, which serves the same role as σx in the 1D case. The
linear approximation τ0 + cT0 (x− x0) is the 2D version of
the 1D linear approximation τ0+ τ ′(x0)(x−x0), where x0

is the center pixel in each interval of the grid, and c0 is the
gradient at x0.

Before we proceed to the proof, we state the main result.

Lemma 10. Let τ(x) be a 2D time of arrival function
over the unit square x ∈ [0, 1]×[0, 1]. Suppose that we
use M ×N pixels to approximate the unit square, and
for simplicity assume that M = N . Let α0 be the total
flux over the unit square, then The variance is given by

Var =
N2

α0

(
∥c∥2σ2

s + σ2
t

)
, (53)

where σs = 1/(
√
12N) is the spatial radius of

the Gaussian approximation, and σt is the temporal
spread of the pulse.

Proof of Lemma 10. The core derivation is the convolution
between the 2D Gaussian in space and the 1D Gaussian in
time. By separability of a 2D Gaussian, we can write the 2D
Gaussian as the convolution of two orthogonal 1D Gaussian
functions:

N (x | 0, σ2
sI) = N (x | 0, σ2

s)⊛N (y | 0, σ2
s).

The order of x versus y does not matter. Then, substituting
it into the main convolution, we can perform two consecu-
tive convolutions:

N (t | τ0 + cT0 (x− x0), σ
2
t)⊛N (x | 0, σ2

sI)

= N (t | τ0 + cT0 (x− x0), σ
2
t)⊛N (x | 0, σ2

s)

⊛N (y | 0, σ2
s)

The first convolution, following the derivation of Theo-
rem 3, will give us

N (t | τ0 + cT0 (x− x0), σ
2
t)⊛N (x | 0, σ2

s)

= N (t | τ0 + cT0 (x− x0), σ
2
t + [cx0]

2σ2
s),

where cx0 is the horizontal component of the gradient c0 =
[cx0 , c

y
0]

T .
The second convolution, which is applied after the first

convolution, will give us

N (t | τ0 + cT0 (x− x0), σ
2
t + [cx0]

2σ2
s)⊛N (y | 0, σ2

s)

= N (t | τ0 + cT0 (x− x0), σ
2
t + [cx0]

2σ2
s + [cy0]

2σ2
s)

= N (t | τ0 + cT0 (x− x0), σ
2
t + ∥c0∥2σ2

s).

Restricting ourselves to x = x0, we can show that the
effective return pulse is

λm,n(t) = αN (t | τm,n, ∥cm,n∥2σ2
s + σ2

t) + λb.

Finally, we recognize that since there are MN pixels in
the unit space, (and assuming that M = N for simplicity),
then each pixel will see a total flux of α0/N

2. Therefore,

E
[
(τ̂m,n − τm,n)

2
]
=

variance of λm,n(t)

α

=
N2

α0

(
∥cm,n∥2σ2

s + σ2
t

)
.

Summing over m and n will give us

Var =
M−1∑
m=0

N−1∑
n=0

∫ m+1
M

m
M

∫ n+1
N

n
N

E
[
(τ̂m,n − τm,n)

2
]
dx

=
N2

α0

(
∥c∥2σ2

s + σ2
t

)
.

Visualizing the Variance. Fig. 23 shows the visualization
of the variance as a function of N . The experimental con-
figuration is identical to the one we used in the 2D bias anal-
ysis. For the purpose of analyzing the variance, we need to

further set up a Monte Carlo simulation. To this end, we first
set the spatial spacing of the grid as ∆x = 1/512 along each
direction. The total amount of flux is set as α0 = 1e6. Sup-
pose that we have N pixels on each side, the unit square will
have N2 pixels. Each pixel will therefore observe α0/N

2

amount of flux. When N = 8, the per pixel flux is 15625
photons per pixel. When N = 256, the per pixel flux is
15.26 photons per pixel.

For simplicity, we assume that the pulse s(t) is Gaussian.
The width of the pulse is 2 arbitrary units, which is roughly
10 percent of the true depth value. We also assume that the
noise floor is λb = 0. These two assumptions allow us to
use a simple ensemble average as the maximum likelihood
estimator. Otherwise, we need to numerically implement
the matched filter.

In this particular experiment, we use σs = 1/(
√
12N)

as the spatial radius, and ∥c∥2 = 1.42× 103. The variance
is calculated for each pixel and then summed over the entire
unit square. A total number of 1000 random trials are con-
ducted to obtain the variance per pixel (and for the whole
image).

17.5 18 18.5 19

time, t

0

50

100

150

200

250

estimated

17.5 18 18.5 19

time, t

0

50

100

150

200

250

estimated

17.5 18 18.5 19

time, t

0

50

100

150

200

250

estimated

17.5 18 18.5 19

time, t

0

50

100

150

200

250

estimated

0 100 200 300 400 500 600

N

10
-4

10
-2

10
0

V
a

ri
a

n
c

e

Simulated Var (2D)

Theoretical Var (2D)

Figure 23. Visualization of the variance for a 2D example. For
every pixel in the scene, we run a Monte Carlo simulation to com-
pute the variance of the estimated depth values. The histograms
shown in this figure correspond to the four resolutions we showed
in the bias case. As we increase the spatial resolution (so that
each pixel becomes smaller), the histograms become flat and so
the variance increases. The plot at the bottom highlights the ex-
cellent match between the theoretically predicted variance and the
simulated variance.

16. Real 2D Experiment

In this section, we provide additional detail on how real 2D
experiments are conducted.

16.1. Snapshot of Real Data

As depicted in the main text, the real data is collected by a
192 × 128 SPAD array previously reported by Henderson
et al. [3]. The system has a time-to-digital converter (TDC)
timing resolution of 35 ps. For convenience, we crop the
center 128 × 128 region for analysis. Fig. 24 shows a one-
frame snapshot of the real data, and the 10,000-frame av-
erage. We observe that the 10,000-frame average is noisy,
although the shape of the object is visible.

1 frame average of 10,000 frames

Figure 24. Raw data produced by the SPAD array.

Inspecting the source of the noise, we plot the histogram
of one of the pixels of the data volume in Fig. 25. We rec-
ognize two issues in the data: (i) There is a secondary pulse,
likely caused by secondary bounces from the background;
(ii) there is a strong peak happening at the beginning (and
sometimes at the end) of the sensing period, likely caused
by failed detections of the SPAD. We did not show these
samples in the histogram because it is just a strong spike in
the histogram. The presence of these two issues makes the
average of the time stamps problematic, hence generating
noise.

100 150 200 250 300

time, t

0

200

400

600

800

1000

1200

Figure 25. Histogram of one of the pixels in the SPAD data array.

16.2. Pseudo Ground Truth

For the purpose of MSE analysis, we need to construct a
pseudo ground truth — a ground truth signal generated from
all the available samples, hoping as noise free as possible.
To achieve this goal, we need to reject the outliers so that
we can retain only the primary pulse.

Our pre-processing step is done by identifying the cen-
ter of the primary pulse. Once the center is identified, we
crop around the center histogram with ±3σt where σt is the
standard deviation of the pulse.

Two remarks are worth mentioning: (i) The identifica-
tion of the center of the primary pulse involves a few steps.
The first step is to find a coarse estimate of the center. For
this purpose, we compute the mean of the entire 10,000 data
points and crop a large temporal window around the mean.
We smooth out the histogram so that we can pick a more
reliable peak. The smoothing step is done by adding Gaus-
sian random variables. (ii) Once the peak is identified, we
move to the second stage by putting a small temporal win-
dow around the peak. We reject all samples that fall outside
this small temporal window, thus effectively removing the
secondary pulse and the spike in the beginning and at the
end.

After we have cleaned up the data, we can plot the re-
sulting histogram as shown in Fig. 26. The pulse is signifi-
cantly more concentrated around the true peak. The result-
ing depth map is slightly over-smoothed. However, since all
our subsequent analysis is done based on the processed his-
togram (as we will be re-sampling with replacement from
the processed histogram), computing the MSE with respect
to this smoothed depth map will not cause issues to the anal-
ysis.

200 210 220 230 240

time, t

0

100

200

300

400

500

Figure 26. [Left] The processed histogram of one of the pixels and
[Right] the resulting depth map.

16.3. Estimating σt and α0

In the theoretical analysis of the variance, we need to know
the pulse width σt and the total amount of flux α0.

For σt, we use the histogram shown in Fig. 26 to com-
pute the variance at every pixel location. Although the pulse
is asymmetric, we treat it as a symmetric pulse and com-
pute the standard deviation regardless. We repeat the pro-
cess for every pixel, and we generate a map of σt as shown
in Fig. 27. For simplicity, we use the average of the σt in
this map as the true value for our theoretical analysis. Our
estimated σt is σt = 3.93.

For α0, we again use the histogram shown in Fig. 26 to
count the number of elements in the histogram. Recall that

20 40 60 80 100 120

20

40

60

80

100

120

0.5

1

1.5

2

2.5

3

3.5

4

20 40 60 80 100 120

20

40

60

80

100

120
1000

2000

3000

4000

5000

6000

7000

8000

9000

σt α0

Figure 27. The values of σt and α0 over the unit square.

during the pre-processing stage, we have already eliminated
all the outliers from the raw data. This will leave us with
a smaller set of samples compared to the original data ar-
ray. The number of active samples will inform us about the
number of photons arriving at the sensor. During our anal-
ysis, we will sample with replacement from the histogram.
For each trial, we draw K samples from the available data
points per pixel. Therefore, the total flux we have in the
data is the sum of the values in Fig. 27, divided by 10,000
because we have 10,000 frames, and multiplied by K. Ap-
proximately our α0 is 3.86× 104.

16.4. Variance Estimation via Bootstrap

The main tool we use to evaluate the variance is bootstrap.
The idea is that given a dataset of M data points, we sam-
ple with replacement K samples and calculate the estimate
of interest. The variance of the estimate is called the boot-
strapped variance. When we repeat the random trials for
long enough, the bootstrapped variance will converge to the
true variance in probability.

Following this idea, for every pixel, we sample with re-
placement K = 3 times to generate the samples. From
these samples, we construct the ML estimate (for every
pixel) where the ML estimation is done by taking the sim-
ple average of the samples. Here, we assume that the pulse
is symmetric even though it is not. We find that this ap-
proximation does not cause too many issues. Once the ML
estimate is obtained, we repeat the process 20 times to eval-
uate the variance.

For lower resolutions, we bin the samples to form a
bigger pool. If we use a 2 × 2 bin, then the total num-
ber of samples to be generated for the bootstrap purpose is
K × 22 = 12 samples; If we use a 3× 3 bin, then the total
number of samples is K×32 = 27 samples. These samples
will give us an estimate of the real variance of the data.

The theoretical formula of the variance is based on a
simpler form σ2

tN
2/α0. We omitted the ∥c∥2σ2

s because
∥c∥2σ2

s is small compared to σ2
t . (Recall that σs =

1/(
√
12N)).

16.5. Bias Estimation via Numerical Integration

The bias is computed numerically via integration. The rea-
son is that the pseudo ground truth depth map is overall a
piecewise constant function. As we explained in the limita-
tion subsection of the Bias section, there is no simple ana-
lytic formula for calculating the bias for piecewise constant
functions unless we perform the numerical integration. The
numerical integration is done by downsampling and upsam-
pling the cleaned raw data volume. For example, to calcu-
late the bias caused by a 2 × 2 bin, we take the average
over all the available samples in the 2× 2× T (where T is
the number of available samples). After binning, we scale
it back to the full resolution and compute the sum squared
error with respect to the pseudo ground truth.

17. Q&A
In this section, we list a few questions and answers which
might be of interest to readers.

Q1. Can you just use as many pixels as possible during
acquisition, and then perform binning (of the time stamps)
as post-processing?

Answer: Yes, this is completely possible. In fact, in
our real data analysis, we see that when the pulse is short
enough, the MSE decays monotonically with the N . Theo-
retically, the optimal N still exists but this N could be larger
than what the physical resolution of the sensor can support.
In this case, we should just maximize the resolution.

From a practical point of view, we also agree that post-
processing of noisy time stamps can be cost-effective. Ana-
log processing on the sensor front could also be a solution.

Q2. What if you denoise the estimated time of arrival
map? Will it beat your MSE bound?

Answer: Yes, it will. The theory we presented here uses
the maximum likelihood (ML) estimation. ML estimation
allows us to say things concretely so that we can offer a
simple and interpretable MSE estimate. If we do denoising,
then we will be doing maximum a posteriori or minimum
mean square estimation. In those cases, we need to specify
the prior distribution for which no one has a formula. Even
if we do pick a prior (e.g., total variation), the derivation of
the MSE will be substantially harder if not intractable. So,
we lose the capability of writing a simple and interpretable
formula. In short, while we are almost certain that a well-
defined post-processing will “beat” our MSE bound, this
“victory” offers little to no theoretical benefit to the scope
of this paper.

Q3. What is the utility of this paper?
Answer: The MSE we show in this paper is, in our hon-

est opinion, simple, interpretable, and elegant. For the first
time in the LiDAR literature, we provide the exact charac-
terization of the resolution limit.

Q4. You need to show more comparisons by sending
the raw time stamps through a state-of-the-art depth recon-
struction neural network.

Answer: Beating a SOTA depth reconstruction neural
network is not the purpose of this paper.

Q5. Is MSE the right metric?
Answer: Yes, if you want to derive equations, especially

a simple equation to give you intuitions about the problem.
No, if you are more interested in practical scenarios. There
is no better or worse.

Q6. Your model is inaccurate. It made too many as-
sumptions such as Gaussian pulse, single-bounce, no dark
current, constant reflectivity, etc.

Answer: While we also want to be as accurate as possi-
ble, accuracy and simplicity are mutually exclusive in this
paper. As we have explained in the supplementary material,
all these situations can be handled numerically by integra-
tions. But this will defeat the purpose of deriving a closed-
form expression.

Q7. Some papers in the literature use the Markov
chain/self-excitation process to model the photon arrivals.
Why are you skipping all these?

Answer: We are just assuming that there is no dead time.
If there is dead time, then you are correct that self-excitation
processes are needed to provide a better model. However,
this would be substantially more complicated than what we
present here. By assuming no dead time, we can go back to
the standard inhomogeneous Poisson process by exploiting
independence. Even in this significantly simplified case, we
see that the derivation of the MSE is non-trivial.

Q8. Can your model handle fog?
Answer: Yes, but it will be complicated. Scattering

medium such as fog affects the reflectivity α0 and causes
additional background as shown in Figure 16. You will need
numerical integration to evaluate the bound.

References
[1] Israel Bar-David. Communication under the poisson regime.

IEEE Transactions on Information Theory, 15(1):31–37,
1969. 1, 2, 4

[2] Stanley H. Chan. Introduction to Probability for Data Science.
Michigan Publishing, 2021. 10

[3] Robert K. Henderson, Nick Johnston, Francescopaolo Matti-
oli Della Rocca, Haochang Chen, David Day-Uei Li, Graham
Hungerford, Richard Hirsch, David Mcloskey, Philip Yip, and
David J. S. Birch. A 192× 128 time correlated SPAD image
sensor in 40-nm CMOS technology. IEEE Journal of Solid-
State Circuits, 54(7):1907–1916, 2019. 18

[4] Dongeek Shin, Ahmed Kirmani, Vivek K Goyal, and Jef-
frey H. Shapiro. Information in a photon: Relating en-
tropy and maximum-likelihood range estimation using single-

photon counting detectors. In 2013 IEEE International Con-
ference on Image Processing, pages 83–87, 2013. 5

[5] Donald L. Snyder and Michael I. Miller. Random Point Pro-
cesses in Time and Space. Springer, 1991. 1

[6] Alessandro Tontini, Sonia Mazzucchi, Roberto Passerone,
Nicolò Broseghini, and Leonardo Gasparini. Histogram-less
LiDAR through SPAD response linearization. IEEE Sensors
Journal, 24(4):4656–4669, 2024. 14

	. Proof of Theorems
	. Axioms
	. Proof of Theorem red 1
	. Proof of Theorem red 2
	. Proof of Theorem red 3
	. Proof of Theorem red 4

	. Proof of Additional Results
	. Proof of Corollary red 1
	. Proof of Corollary red 2
	. Proof of Lemma red 1
	. Cramer Rao Lower Bound

	. Auxiliary Results and Proofs
	. Lemma about Product of Functions
	. Lemma about Characteristic Function
	. Lemma for 1 and F1
	. Lemma for 2 and F2

	. Detailed Setups of Experiments
	. Ground Truth Time-of-Arrival Function
	. What if we use a different (x)?

	. Unit Conversion
	. Sampling Procedure
	. Inverse CDF Method
	. Implementation and Demonstration

	. Non-zero Noise Floor
	. Maximum Likelihood Estimation
	. MSE Calculation
	. Solving the ML Estimation
	. Experimental Results

	. Pile-up Effects
	. Distribution
	. MLE
	. Theoretical MSE

	. Dark Count
	. Extension to 2D
	. Bias
	. Variance

	. Real 2D Experiment
	. Snapshot of Real Data
	. Pseudo Ground Truth
	. Estimating t and 0
	. Variance Estimation via Bootstrap
	. Bias Estimation via Numerical Integration

	. Q&A

