Anatomically Constrained Implicit Face Models

Supplementary Material

Figure 9. We show here the collection of 3D shapes used in our
Model Learning stage. For all our experiments we used 1 neutral
expression (or rest pose) and 19 expressions, all captured and re-
constructed following the method of Beeler et al. [2].

A. Additional Details
A.l. Anatomy Constraints

We loosely regularize the skull and mandible geometries us-
ing sparse anatomical constraints. We compute these sparse
constraints by fitting a template skull and mandible meshes
to the neutral geometry following the method of Zoss et
al. [56]. For any given skin point inside a hand-painted
trusted region of the bone fitting process, we trace a ray
along the inverse direction of the skin normal and store the
bone intersection point only if the bone faces the same di-
rection as the skin. We then trace another ray following now
the bone normal, intersecting the skin again (potentially at
a different point) and store the thickness and bone normal
for the intersected skin point. Overall our sparse anatomical
constraints exist only for 5 to 10% of the skin query points.
We then use those bone points and thicknesses inside our
losses La and Lp respectively. We show a visualization of
the anatomical constraints and learned anatomies and thick-
nesses on Fig. 10. A visual depiction of the full set of 20
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Figure 10. We show for two actors, first on the left the input neu-
tral geometry next to the fitted skull and mandible, with an over-
lay of our computed sparse anatomical constraints. On the right,
we show the reconstructed geometry, the learned anatomy (using
those sparse anatomical constraints) and learned thicknesses.

shapes used in our work is shown in Fig. 9.

A.2. Network Architecture

In Fig. 11 and Fig. 12, we show a detailed breakdown of our
memorization and fitting networks.

B. Additional Results
B.1. Face Reconstruction from 2D Landmarks

In the main paper, we describe how to formulate a 2D po-
sition constraint to fit our anatomical implicit face model to
landmarks obtained from a pre-trained landmark detector.
In Fig. 13, we show qualitative results of fitting our trained
anatomical implicit model to 10,000 dense landmarks pre-
dicted by a 2D landmark detector [13] on an input monocu-
lar video.

B.2. Learning Actor Specific Anatomical Properties

In Fig. 15, we show additional results of the recovered dense
anatomical properties on a number of actors with varying
face shapes spanning different ethnicities, and age groups.

B.3. Runtime Analysis

Our model fitting stage, which involves the training of the
fitting MLPs Fy and Fr (see the main text), takes at-
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Figure 11. Starting from a query point ¢ on the template shape, an ensemble of Siren MLPs [40] predict the dense underlying anatomy
by, anatomy normals 1y, and thg soft tissue thickness dp, using which a  neutral shape 8o of the actor is reconstructed. Then using learned
per-shape jaw transformations 7;, and actor specific skinning weights k, the neutral is skinned to account for the rigid jaw movement.
Finally, expression specific deformations €; are added on top of the skinned mesh to reconstruct the given blendshapes.
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Figure 12. Given a query point c and a learned code z; for each target shape, we use small fitting MLPs to predicts the jaw transformation
T and the per-point coefficients w7, using which the AIM model can be evaluated to result in the estimated shape. The fitting MLPs are
trained to minimize the reconstruction error between the estimated and target shape.

most a few seconds per-frame to converge on a Nvidia RTX of our pipeline to future work, which could also include ex-
3090. As an engineering update to our system, we exper- ploring fused MLPs for the model learning stage.

imented with the tinycuda framework of Muller et al. [32]

and found that it provided a 2x performance improvement B.4. 3D Performance Retargeting

in model fitting, without any adverse effects on fitting accu-

racy. We leave a more thorough performance optimization We kindly refer you to our supplemental video for addi-

tional retargeting results and qualitative comparisons.



Figure 13. We demonstrate a proof of concept of the application
of our model in face reconstruction, where our AIM model can be
fit to 2D landmarks obtained from a pre-trained landmark detector,
capturing both the pose and expression of the person faithfully.

Table 2. Average error (in mm) on a sequence of 100 frames using
different types of activation functions in our MLPs.

gelu | relu | siren
0.71 | 0.62 | 0.21

Table 3. Average error (in mm) on a sequence of 80 frames using
variation of our loss functions during the model learning stage.

noL, | noLg | no Lgyy | no Lp | Lyggge (Ours)
0.29 0.22 0.24 0.21 0.19
B.5. Ablations

In Table 2 we show an ablation study on our choice of ac-
tivation in our MLPs during the model learning stage. We
compute the average fitting error with 3 variant of our model
(each with a different activation function used in all MLPs).
The siren variant was selected as it performs the best. Ta-
ble 3 shows an ablation of the various losses used during our
model learning stage. We compute the average error during
the fitting stage using AIM models trained by leaving out
different loss functions at the model learning stage. The fit-
ting error is computed on a sequence of 80 unseen frames
by keeping the other fitting parameters identical. We pro-
vide visual results for the several ablations we performed in
our work, which include the effect of removing certain reg-
ularizers used during the model learning stage (see section
in the main text) in Fig. 14, the effect of different activation
functions in Fig. 16, and the size of the hidden layers used
during model learning in Fig. 18.
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Figure 14. 1st row: We show the effect of removing the thick-
ness regularizer Lp that encourages the soft tissue thickness to
remain small in unconstrained areas, 2nd row: the effect of remov-
ing the anatomy loss L 4 which result in a collapse of the learned
anatomy, while still reconstructing the neutral in the first column,
3rd row: The effect of removing the optional skinning weight reg-
ularizer Lx which does not adversely affect the learned skinning
weights as seen in the last column, 4th row: The effect of remov-
ing the symmetry regularizer on the anatomy, as a result of which
the anatomy no longer remains symmetric, and last row, our Lyodel
loss which uses a weight sum of all regularizers.

B.6. Generic Model Comparison

As discussed in the main text, a quantitative comparison of
our actor specific model against a generic 3D morphable
model would be unfair to general 3DMMs as they serve a
more diverse purpose. However in Fig. 17 we show a visual
comparison of 2 expressions fitted using 3D positions as
constraints with our model and the FLAME model [29] for
2 different
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Figure 15. We show the anatomical features recovered by our formulation across a wide variety of actors. From left to right, we show the
ground truth neutral shape, the reconstructed neutral shape, our learned anatomy, our learned soft-tissue thickness, our learned anatomical
normals, and our learned subject specific skinning weights.
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Figure 16. Using GeLU and ReLU activations in our implicit .
MLPs results in oversmoothed anatomy and reconstructions lack- E
ing surface detail. Sine activations provided the best results. 1
S
O
[Te)
~N
N
8 B
I_V. E
5 S
= (=]
o e
s N
3 in
w

Figure 18. While increasing the size of the hidden layers in our
MLPs improved reconstruction performance, it comes at the cost
of a larger network that is slower to evaluate. In our work, we used
a hidden layer size of 256 neurons which provided a good balance
between accuracy and performance.

ours

Figure 17. We show 2 expression of 2 different actors fitted by our
model and the FLAME model [29]. A generic 3DMM is unable to
faithfully capture a particular individuals shape that lies outside of
it’s shape space.
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