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Supplementary Material

1. More Visual Results
1.1. Hierarchical Fine-tuning

Fig. 2 shows HHTS segmentation results for four BSDS500
images [2] at different segmentation levels. Due to the iter-
ative split of inhomogeneous segments, homogeneous areas
can be maintained while areas with many details will be seg-
mented into smaller superpixels. This allows for capturing
tiny and thin image components, even at a relatively low
superpixel count. Further iterations (cf . higher superpixel
count) will extract more subtle object outlines and separate
less distinguishable image components. Fig. 1 shows the fi-
nal HHTS segmentation results after auto-termination while
preserving a minimum segment size of 64 pixels.

1.2. Segmentation Results

Fig. 3 shows some more visual results for BSDS500 images
that were segmented by HHTS. Many different shapes and
types of objects can be detected due to the algorithm’s focus
on boundary adherence. This approach can adjust to diffi-
cult scenes by taking into account more irregular shaped and
less compact superpixels.

1.3. Visual Comparison

A visual comparison of HHTS and oversegmentation meth-
ods implemented in Stutz’s et al. superpixel benchmark [7]
can be found in Fig. 4 and Fig. 5. HHTS achieves to cap-
ture more image details than the compared approaches at
the same superpixel resolution.
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Figure 2. HHTS segmentation results at 250, 500, and 1000 superpixels, adapting to local details while maintaining homogeneous areas.



Figure 3. HHTS segmentation results at 500 superpixels.
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Figure 4. Visual comparison of mean image segments at 500 superpixels for portrait BSDS500 test images [2]
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Figure 5. Visual comparison of mean image segments at 500 superpixels for landscape BSDS500 test images [2]
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