
Learning from Synthetic Human Group Activities
Supplementary Material

This document provides more details about our data
generator, datasets, and experiments. We also include
additional results to supplement the main text. In ad-
dition to this supplementary material, all the data, code,
videos, tools and related materials are organized at
http://cjerry1243.github.io/M3Act.

A. Data Generator: M3Act

A.1. Authoring of Group Activities

Authoring group activities in M3Act is non-trivial because
people adhere to social norms while forming groups. The
authoring requires nuanced adjustments varied from group
to group, including the alignment of characters, their orien-
tations, and the permitted atomic actions. We summarize
these rules and adjustments in Tab. 1. For example, charac-
ters in a talking group are positioned in a circle facing the
center. For queueing groups, characters can form a straight
line, curve, etc., and individuals in a queue can be texting,
idling, talking, and so on.

Group walking, running (jogging), and dancing are the
three group activities with drastic body movements. Par-
ticularly, collision avoidance is one social norm that is im-
plicitly followed by humans during collective walking or
running. Therefore, we propose a simple algorithm to dy-
namically adjust the animation speed for each character en-
gaged in the walking and running activities, thus mitigating
avatar collisions. The detailed algorithm is shown in Alg. 1.
Specifically, the animation speed of a character decreases
when any character is in front of it and close to it. When
no potential collision is detected, the animation speed of a
character can increase up to its initial speed. While animat-
ing complex interactions for group dancing is challenging,
we enforce nearly synchronous movements for all individu-
als.

A.2. List of Variables for Domain Randomization

Domain Randomization allows M3Act to generate massive-
scale diverse group activity data. Compared to People-
SansPeople [11], M3Act contains a much higher degree of
domain randomization for animating human motions and
activities. M3Act consists of a total of 14 atomic ac-
tion classes and 384 animation clips, each with several
blended style parameters such as character arm-space and

Algorithm 1 Dynamic speed adjustment for collision
avoidance.
Require: a list of instantiated characters and their initial

animation speeds.
1: At every frame,
2: for character in Characters do
3: init speed← Initial Speed of character
4: Speed← Current Speed of character
5: pos← Position of character
6: forward← Forward Vector of character
7: flag← False
8: for other character in Characters do
9: if character is not other character then

10: pos other← Position of other character
11: offset← pos other - pos
12: angle← Angle Between forward and offset
13: dist← Length of offset
14: if dist ≤ 0.8 & angle ≤ 60 then
15: flag← True
16: end if
17: end if
18: end for
19: if flag then
20: Speed←Max(Speed * 0.96, 0.1)
21: else
22: Speed←Min(Speed * 1.03, init speed)
23: end if
24: end for

stride. The domain randomization covers the scenes, cam-
eras, lights, multi-groups, and activity authoring, as listed
in Tab. 2. We describe the randomizers in M3Act below.
• Scene Selection Randomizer randomizes the selection

of 3D scene.
• HDRI Randomizer randomizes the selection of

panorama HDRIs.
• Camera Position Randomizer includes the randomiza-

tions of camera height, distance, and angle in a cylindrical
coordinate.

• Light Type Randomizer randomizes the light type.
• Light Position Randomizer randomizes the positions of

all lights.
• Light Intensity Randomizer randomizes the intensities

of all lights.
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Activity Name Alignment Face At Atomic Actions Other Conditions

Walking Straight Line, Circle, Rectangle Same Direction walk Adjust animation speed at runtime

Waiting Multi-Row Straight Lines Same Direction idle, text, talk, point, wave N/A

Queueing Straight Line, One-Corner Line, Front of Queue idle, text, talk, point N/ATwo-Corner Line, Parabola, Curve

Talking Circle Group Center talk N/A

Dancing Multi-Row Straight Lines Same Direction dance Nearly-synchronous movements

Jogging Straight Line, Circle, Rectangle Same Direction run Adjust animation speed at runtime

Table 1. Rules and adjustments for activity authoring.

Category Randomizer Variable Distribution

Scenes Scene Selection scene a set of prebuilt 3D environments
HDRI Selection hdri a set of collected HDRIs

Camera Camera Position

radius Uniform(6, 10)
camera rotation Uniform(0, 360)
camera height Uniform(1, 5)
perturbation Cartesian[Uniform(-1, 1), 0 Uniform(-1, 1)]

Lights

Lighting Volume volume a set of lighting volume conditions
Light Type light type a set of light types

Light Position XZ position Cartesian[Uniform(-20, 20), 0, Uniform(-20, 20)]
height Uniform(5, 10)

Light Intensity intensity range Uniform(0.5, 3)
Light Rotation orientation range Face at Cartesian[Uniform(-50, 50), 0 Uniform(-50, 50)]

Multi-Group

Group Number group number range UniformRange(1, MaxNumGroups)
Group Selection group activity a set of modular groups

Group Placement group position Cartesian[Uniform(-20, 20), 0, Uniform(-20, 20)]
group rotation Euler[0, Uniform(0, 360), 0]

Activity
Authoring

Character Number character number range UniformRange(1, MaxNumCharacters)
Multi-person Subgroup multi-person number range UniformRange(0, MaxNum)

Character Selection character a set of 2200 characters

Character Texture body color RGBA[Uniform(0.4, 1), Uniform(0.4, 1), Uniform(0.4, 1), Uniform(0.6, 1)]
clothes colors HSV[Uniform(0, 1), Uniform(0, 1), Uniform(0.4, 1)]

Character Alignment alignment method a set of aligment methods
Character Interval interval Uniform(MinInterval, MaxInterval)

Character Perturbation position perturbation Uniform(-0.25*interval, 0.25*interval)
rotation perturbation Uniform(-45◦, 45◦)

Atomic Action atomic action a set of permitted atomic actions

Animation

animation clip a set of animation clips
blended parameter Uniform(0, 1)

speed Uniform(0.8, 1.2)
normalized starting time Uniform(0, 1)

Table 2. List of randomizers, variables, and distributions used in M3Act.

• Light Rotation Randomizer randomizes the rotations of
all lights.

• Group Number Randomizer randomizes the number of
groups being instantiated during the simulation.

• Group Selection Randomizer randomizes the selection
of the activity for each group in the scene.

• Group Placement Randomizer randomizes the center
position for each group.

• Character Number Randomizer randomizes the num-
ber of characters being instantiated in a group.

• Multi-person Subgroup Randomizer randomizes the
number of subgroups in an activity, such as two persons
talking to each other in a queueing group. This random-

izer applies to queueing and waiting groups.
• Character Selection Randomizer randomizes the selec-

tion of characters.
• Character Texture Randomizer randomizes the clothes

and body colors of all characters.
• Character Alignment Randomizer randomizes the

method used to align characters in a group.
• Character Interval Randomizer randomizes the inter-

val between characters.
• Character Perturbation Randomizer adds small pertur-

bations to the characters’ positions and rotations.
• Atomic Action Randomizer randomizes the selection of

permitted atomic actions.



Dataset MOT17 [19] DanceTrack [21] M3ActRGB†

#Videos 14 100 2500
Avg. #Tracks 56 9 8
Avg. Track Len. (s) 35.4 52.9 4.7
FPS (s) 30 20 20
Total Frames 11,235 105,855 250,000

Table 3. Comparison of multi-object tracking datasets.
M3ActRGB† consists of “WalkRun” and “Dance” data used in our
tracking experiments.

• Animation Randomizer includes the randomization of
animation clips, blended style parameters, animation
speeds, and playback offsets.

B. Datasets
M3ActRGB contains 9K videos of multi-group and 6K
videos of single-group activities, with a total of 6M RGB
images and 48M bounding boxes. We show a collage of im-
ages from M3ActRGB in Fig. 4, which contains diverse and
realistic multi-group and single-group activities. (See our
supplementary video for animated data samples.) The dis-
tribution of M3ActRGB is also shown in Fig. 1. M3ActRGB
contains as many as 19 persons per frame and an aver-
age of 8.1 persons per frame. Additionally, we show the
comparison of several tracking datasets in Tab. 3. Even
though we only selected the “WalkRun” and “Dance” data
from M3ActRGB for the tracking experiments, the dataset
size is much larger compared to MOT17 [19] and Dance-
Track [21]. In terms of the average number of tracks per
video, our dataset is closer to DanceTrack. MOT17 mostly
contains crowded scenes, while DanceTrack has only one
dancing group per video.
M3Act3D has 65K simulations of 3D single-group motions
with a total duration of 87.6 hours, captured in 30 FPS.
Unlike M3ActRGB which contains equally simulated group
activities, M3Act3D has different data sizes of all seman-
tic groups based on their complexity. The complexity of a
group includes its alignment methods, permitted atomic ac-
tions, animation clips, and styles. Fig. 2 shows the distribu-
tion of M3Act3D. Specifically, M3Act3D has more queue-
ing groups than talking groups because the persons can form
various shapes and more atomic actions can be performed
within a queueing group. We also slightly increased the
range of the number of persons in the group for M3Act3D.
On average, it has 6.7 persons for every single group and a
maximum of 27 persons.

C. More Details of Experiments
C.1 Multi-Person Tracking

The goal of multi-person tracking (MPT) is to predict the
trajectories (bounding boxes + identification) of all persons

Figure 1. Distributions of M3ActRGB.

Figure 2. Distributions of M3Act3D.

across an image sequence from a dynamic video stream.
Traditionally, multi-object tracking is approached by adding
a re-identification layer, either using trainable architec-
ture [26, 27] or applying heuristics-based algorithms [2], on
top of the object detection results, aiming to associate the
bounding boxes across frames. Recently, end-to-end meth-
ods [31, 33] have shown to be more effective in several chal-
lenging datasets, such as DanceTrack [21] and MOT17 [19].
To demonstrate the effectiveness of our synthetic data in en-
hancing real-world performance in multi-person tracking,
we assess the impact primarily on MOTRv2 [33]. It is an
extension of MOTR [31] by incorporating YOLO-X [14]
for bootstrapping detections. Using an end-to-end bench-
mark allows us to evaluate improvements with the synthetic
dataset in both detection and identification.
Implementation Details. We follow the same hyperpa-
rameters and data preprocessing procedure from the author-
provided MOTRv2 repository1 for all training jobs. For
mixed training with our synthetic data, we simply combined
both data from M3ActRGB and DanceTrack as one large
dataset, without any additional probability sampling from
the real and synthetic data. All models were trained with

1https://github.com/megvii-research/MOTRv2
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16 NVIDIA A4000 GPUs, using a batch size of 1. It took
roughly 7 days of training for all synthetic and real data
combined.

C.2 Group Activity Recognition

Understanding collective human behaviors and social
groups brings significant importance to various domains,
including humanoid robots, autonomous vehicles, and
human-computer interactions [4–8, 12, 18, 28]. State-
of-the-art methods for group activity recognition (GAR)
leverage 2D skeletons as input due to the effectiveness
and robustness gained from the less biased and more
action-focused representations [13, 20, 23, 30, 32, 34].
We describe the details of 2D skeleton-based GAR ex-
periments that were primarily studied in our main pa-
per. Let [s1, · · · , st] denote a video with t frames and
n persons, each frame si := {p1, · · · , pn} where pi :=
[(x1, y1, c1), · · · , (xj , yj , cj)]. Here, j represents the num-
ber of joints in a person’s skeleton, and each three-tuple
(xj , yj , cj) respectively denotes the x and y coordinates in
the pixel space and the class c of the joint. respectively de-
notes the x, y coordinates in the pixel space and the class c
of the joint. For the given input [s1, · · · , st], the objective of
GAR is to output the class of the group activity performed
by the dominant group among these n persons and identify
the action class of each individual in the video. Usually, the
task assumes each video has one dominant group, as any
outlier person does not contribute to the group.
Implementation Details. Our implementations of Com-
poser [34] and Actor Transformer [13] for the experiments
are based on the open-sourced implementation and hyper-
parameter settings2. The only modified hyperparameter
is the batch size, from 384 to 256 due to our computa-
tion constraints with an NVIDIA RTX 3090 graphics card.
Both Composer and Actor Transformer are transformer [25]
based architectures. Note that both architectures are slightly
modified after synthetic pre-training, due to the differences
between the synthetic and real datasets in the maximum
number of persons in a clip and the number of atomic action
classes. Specifically, we set a different maximum sequence
length to the transformer encoders of Composer and Ac-
tor Transformer and replaced the last layers (i.e., the group
activity classifier and the person action classifier) with new
classifiers to output the correct data shape for the target real-
world dataset.

C.3 Controllable 3D Group Activity Generation

Let GTP = {min}i=1∼T,n=1∼P be a group of human mo-
tions with a total of T frames and P persons. The 3D
pose of each person is denoted as min ∈ Rj×d, where
j is the number of joints of a person and d is the joint’s

2https://github.com/hongluzhou/composer
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Figure 3. The architecture of MDM+IFormer. The model takes
the noised group motion GTP

k , an activity class, and a time step
k as inputs and outputs G̃TP

0 , an estimation of the clean group
motion. The interaction transformer encoder is “added” after the
transformer encoder layer of MDM [22] for modeling the person
interactions.

feature dimension. We concatenate the global root posi-
tion and all joints’ 6D rotations [6, 35] as the pose repre-
sentation. Therefore, j = 26 (with 25 actual joints) and
d = 6. The same representation is used as the input for
3D group activity recognition with Composer [34] and used
as the ground truth during training for both MDM [22] and
MDM+IFormer baselines for 3D group activity generation.

Composer for 3D Group Activity Recognition. The
learning-based metrics (recognition accuracy, FID, diver-
sity, and multimodality) [15] that are used to evaluate the
generated 3D group activities require a well-trained 3D
group activity recognition model. Composer [34] is a
2D skeleton-based group activity recognition model with a
multi-scale transformer-based architecture. We chose Com-
poser because it is a hierarchical architecture with fine-
grained latent group-level and person-level features. We
modified the first layer of Composer so that it accepts as in-
put the aforementioned 3D group representation. We used
the same set of hyperparameters as the GAR experiments
including a learning rate of 0.0005, a weight decay of 0.001,

https://github.com/hongluzhou/composer


a hidden dimension of 256 for the transformer encoders, ex-
cept a batch size of 64, a maximum number of 27 persons,
and a total number of 26 joints.

After the 3D group activity recognition model is well-
trained, we obtain the 3D group activity recognition accu-
racy, and extract latent group and person features to cal-
culate the FID, diversity, and multi-modality metrics. The
latent group representation is the learned CLS token from
the last block and last scale of the Multi-Scale Transformer
module of Composer, whereas the latent person representa-
tions are the learned person tokens from the last block and
the second scale (i.e., the transformer encoder of the person
scale) of the Multi-Scale Transformer module.
MDM & MDM+IFormer. We follow the same diffusion
scheme as MDM [22] to obtain the noised group activity at
every k-th diffusion time step, GTP

k . Specifically, GTP
0 :=

GTP , meaning no noise is added at the 0-th diffusion time
step. The reversed diffusion process is then formulated as:

G̃TP
0 = D(GTP

k , k, c), (1)

where D is the MDM+IFormer network, illustrated in
Fig. 3. G̃TP

0 is the estimated clean group activity and c
is the one-hot activity label. The loss function follows the
objective in [17] and is defined as:

L =
∣∣∣∣∣∣GTP

0 − G̃TP
0

∣∣∣∣∣∣2 . (2)

Our implementations of the MDM and MDM+IFormer
baselines for 3D group activity generation are based on the
author-released implementation of MDM3 without any hy-
perparameter tuning. Both models were optimized using
the same loss function described above and trained on an
NVIDIA RTX 3090 graphics card for 320K iterations.
Formulas of Social Repulsive Forces [16]. The three
position-based metrics (in Sec. 4.3.1 of the main paper) are
formulated as follows.
– Repulsive interaction force:

f⃗ int
ij = A · exp[(ri + rj − dij)/B] · n⃗ij . (3)

f⃗ int
ij is the interaction force of character j applied to charac-

ter i. A and B are constants (A := 2, 000 and B := 0.08).
ri and rj are the radius of the characters. dij is the distance
between the characters. n⃗ij is the unit vector pointing from
character j to character i.
– Contact repulsive force:

f⃗ cont
ij = k ·max(0, ri + rj − dij) · n⃗ij , (4)

where k is a constant (k := 120, 000).

3https://github.com/GuyTevet/motion-diffusion-
model

#Epochs required for model convergence Target
(Composer [34] / Actor Transformer [13]) CAD2 [10]

Source CAD2 [10] 88 / 233
M3Act 13 / 92

Table 4. Pre-training with our synthetic data leads to faster model
convergence on the target domain for GAR. (Composer: 6.8×
faster; Actor Transformer: 2.5× faster)

– Total repulsive force:

f⃗ total
ij = f⃗ int

ij + f⃗ cont
ij . (5)

All constants follow the social force model proposed
in [16].
Generated 3D Group Activities. Please refer to our sup-
plementary video for the rendered 3D group activities gen-
erated by MDM and MDM+IFormer.

D. Additional Experiments

Pretraining with data from M3Act can improve convergence
speed on the target dataset. We conduct the GAR exper-
iment using 2D skeletons as the only input modality for
both models and compare the number of epochs required
for model convergence in Tab. 4. To automatically deter-
mine whether or not the model training has saturated, we
adopted early stopping by setting a maximum number of
500 epochs with stopping patience of 50 epochs. The re-
sults suggest that training Composer from scratch on CAD2
requires 88 epochs on average; with M3Act pre-training,
Composer only requires 13 epochs for convergence.

E. Limitations & Future Work

We demonstrate that synthetic data can replace a great
amount of real data [9] and successfully mitigate the
scarcity of real data for multi-person and multi-group tasks,
despite the domain gap that restricts the generalizability of
models trained with synthetic data. With the release of our
data generator, M3Act, we encourage the community to cre-
ate their own data or enhance the synthetic data generator.
While collecting more assets and generating more data with
adjusted camera views can surely increase data diversity
and shorten the gap, we would also like to point out some
aspects of the generator that should be addressed in the fu-
ture to create more realistic data.
Publicly-available assets. Most assets we use in M3Act
are publicly available, including HDRIs, human characters,
and animations. However, most existing assets such as pho-
tometric 3D scenes and high-quality avatars may require ad-
ditional licensing for model training. Some assets could be
restricted to specific game engines, which hinders the de-
velopment of synthetic data.

https://github.com/GuyTevet/motion-diffusion-model
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Simulated Hair and clothes. The avatars used in M3Act
do not contain hair and clothes physics that are in accor-
dance with their body motions. Adding cloth and strand-
based hair simulation would be sufficient for realistic inter-
actions between hair/cloth and body, and thus improve the
data quality.
Finger and face Movements. Our animations do not con-
tain finger and face movements. While it might be reason-
able as human groups are generally captured from a dis-
tance, adding finger and face movements can still improve
the fidelity of the human motions.
Human-environment interactions. Like most synthetic
datasets [1, 3, 24, 29], M3Act lacks meaningful interactions
between human and environment. The interactions might
include groups of humans navigating in a complex environ-
ment, a person picking up a phone while texting, or holding
a suitcase. Animating human motions and activities with
scene awareness is incredibly challenging. A simple solu-
tion is to polish each scene by carefully placing the avatars
and staging the human behaviors. However, it would re-
quire significant manual efforts and limit the scale and di-
versity of the synthetic data.
Complexity for human groups. Animating human groups
is significantly more challenging than animating the mo-
tions of a single person because the complexity (the num-
ber of interactions) increases quadratically as the number
of persons increases. We apply relatively simple heuristics
when designing rules for authoring human groups, which
could only reflect a certain portion of real-world activities.
These underlying rules that drive the group motions could
also lead to datasets that are less complex than real-world
ones, limiting the model generalization on downstream
tasks. Creating new groups with expert-guided heuristics,
LLM-generated rules, or directly from the 3D GAG method,
should be considered. An alternative would be using exist-
ing motion capture data in replace of the procedural gen-
eration method. However, the lack of fine-grained motion
capture data for large-scale collective 3D group motions is
an obstacle to the development.
Societal Impacts. While we demonstrate the effectiveness
of our synthetic data on several tasks, it is important to note
that the use of synthetic data, in all manners, may still result
in unbalanced and biased results. We strive to ensure the
inclusiveness and fairness of our datasets by incorporating
human avatars of all ages, genders, and ethnicities, provid-
ing a representative and equitable approach to generating
data for responsible advancement in related fields.
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