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A. Data Augmentation

A.1. Color Augmentation

We have further enhanced our data augmentation
techniques by introducing color perturbations. Specifically,
we add controlled noise to the color of each point and
randomly adjust the contrast. See Eq. (1), where α ∈
[0.5, 1.5] and Noise ∼ N (0, 1).

RGBaug = α×RGB + Noise (1)

A.2. Object Location Augmentation

Previous work by MVT [2, 4] demonstrates the benefits
of a multi-view rotation method to enhance point cloud
inputs. By rotating the object’s location NR times, we
define the rotation angle θ as shown in Eq. (2).

θj =
j × 2π

NR
, for j ∈ {1, 2, . . . , NR} (2)

With this augmentation, models can develop more robust
object representations, less influenced by the initial
viewpoint. In our study, we adopted this technique and
confirmed MVT’s findings that four rotations yield better
results than two or three. However, increasing to eight
rotations does not bring additional benefits and substantially
increases computational load. See Table 1.

For an input P = {p1, p2, . . . , pNp}, we construct the
rotation matrix Rθj = R( j×2π

Nv
) for j ∈ {1, 2, . . . , Nv}.

For each pi in P , and for each rotation j, we generate the
rotated point pji in the augmented set Paug , as defined by
Eq. (3), where Paug has NR ×Np elements.

pji = Rθj (pi), for i ∈ {1, 2, . . . , Np},
for j ∈ {1, 2, . . . , Nv}

(3)

Finally, we utilize Eq. (4) to aggregate multi-view object
features Oj

i , which are D dimensional features, given by
the networks.

Oagg
i =

1

Nv

Nv∑
j=1

Oj
i , for i ∈ {1, 2, . . . , Np} (4)

Rotations Overall1 Easy Hard VD VI
1 60.0% 66.6% 53.7% 57.1% 61.5%
2 62.7% 69.4% 56.2% 62.2% 63.0%
3 63.1% 68.8% 57.5% 62.8% 63.2%
4 64.4% 69.7% 59.4% 65.4% 64.0%
8 62.6% 68.8% 56.6% 62.6% 62.6%

Table 1. Comparative analysis of our model’s accuracy on the
Nr3D [1] dataset for different numbers of rotations applied during
the augmentation process. The optimal accuracy is achieved with
four rotations, while more rotations do not significantly improve
accuracy and considerably increase computational complexity.

B. Model Performance Across Datasets
In this section, we conduct a comprehensive examination

of our model’s adaptability and robustness by training
across a variety of datasets. This approach not only
demonstrates the model’s generalizability but also provides
insights into how different data characteristics influence
performance outcomes. Specifically, we investigate three
distinct training settings: joint training on Nr3D [1] and
Sr3D/Sr3D+ [1], and individual training on each of the three
datasets separately.

B.1. Training on Sr3D+

Previous works have primarily focused on models
trained on the Nr3D and Sr3D datasets. However, the
performance of models trained exclusively on the expanded
Sr3D+ dataset, which augments Sr3D by including samples
with no more than one distractor, remains unexplored.
This section offers a comparative analysis of model
accuracies when trained separately on Nr3D, Sr3D, and
Sr3D+. As shown in Table 2, models trained on Sr3D

Dataset Overall1 Easy Hard VD VI
Nr3D 64.4% 69.7% 59.4% 65.4% 64.0%
Sr3D 75.2% 78.6% 67.3% 70.4% 75.4%
Sr3D+ 72.7% 75.4% 66.4% 69.8% 72.8%

Table 2. Comparison of model accuracies when trained on Nr3D,
Sr3D, and Sr3D+ datasets. The results illustrate that training
on Sr3D and Sr3D+ yields similar and notably higher accuracies
compared to Nr3D.
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Method Nr3D with Sr3D Nr3D with Sr3D+
Overall1 Easy Hard VD VI Overall1 Easy Hard VD VI

ReferIt3D [1] 37.2% 44.0% 30.6% 33.3% 39.1% 37.6% 45.4% 30.0% 33.1% 39.8%
non-SAT [6] 43.9% - - - - 45.9% - - - -
TransRefer3D [3] 47.2% 55.4% 39.3% 40.3% 50.6% 48.0% 56.7% 39.6% 42.5% 50.7%
SAT [6] 53.9% 61.5% 46.7% 52.7% 54.5% 56.5% 64.9% 48.4% 54.4% 57.6%
MVT [4] 58.5% 65.6% 51.6% 56.6% 59.4% 59.5% 67.4% 52.7% 59.1% 60.3%
Ours 63.4% 69.5% 57.6% 64.2% 63.1% 63.9% 71.0% 57.0% 63.1% 64.2%
vs. second best +4.9% +3.9% +6.0% +7.6% +3.7% +4.4% +3.6% +4.3% +4.0% +3.9%

Table 3. Comparative analysis of accuracy for joint training on Nr3D with Sr3D and Nr3D with Sr3D+ datasets. The table highlights that
although our model still outperforms previous works under the same settings, it does not yield better results compared to training solely on
each of the three datasets.

x* ✓ ✓ ✓ -
y* ✓ ✓ ✓ -
z* ✓ ✓ - ✓
d* ✓ - ✓ ✓
Acc 64.4% 62.7% 63.3% 63.5%

Table 4. Model accuracies on Nr3D utilizing different spatial
features. Features marked with an asterisk (’*’) denote normalized
data, while those without a checkmark indicate raw data.

consistently achieve the highest accuracy overall and across
all categories. This is noteworthy considering that Sr3D+
expands the dataset; yet, the addition of these less complex
samples does not translate to enhanced performance. Both
Sr3D and Sr3D+ models exhibit comparable performance
levels, significantly surpassing the accuracy achieved with
Nr3D in all categories.

B.2. Joint Training on Nr3D and Sr3D/Sr3D+

We explored the impact of expanding Nr3D’s training
data with Sr3D and Sr3D+ datasets. The comparative
results are detailed in Tab. 3. Our findings reveal that
combining Nr3D with Sr3D or Sr3D+ offers no significant
advantage over using each of them alone. The performance
in these joint training setups was similar to that of Nr3D
trained in isolation and was markedly lower than when
the model was trained on Sr3D or Sr3D+ alone. This
suggests that, with our method, Sr3D and Sr3D+ data do not
contribute significant benefits when combined with Nr3D.
Instead, the advantages of Sr3D and Sr3D+ seem to be
diminished when merged with Nr3D, indicating that the
augmentation does not necessarily translate to improved
performance and may, in fact, hinder the distinct features
of Sr3D/Sr3D+ datasets from being fully leveraged.

C. Spatial Feature Scaling & Normalization
To enhance the model’s comprehension of spatial

relationships, we define the relative coordinates (x, y, z) of
an anchor object i with the target object as the reference

origin. The distance d in the xy-plane between the target
and the anchor object is represented by dxy =

√
x2 + y2.

With these definitions in place, we proceed to normalize and
scale the spatial features as detailed in Equations Eq. (5),
Eq. (6), and Eq. (7). The impact of these normalization
steps on model accuracy is summarized in Table 4.

Determine the Direction:
For each potential anchor object, we scale (x, y) to obtain a
unit vector that indicates the direction from the target object.
As shown in Eq. (5).

(x∗, y∗) =
(x, y)

∥(x, y)∥2
(5)

Scale the Relative Height:
We also scale the relative height z to normalize the height
differences with respect to the target object. This ensures
that the range of the relative heights is normalized to 1. As
shown in Eq. (6).

z∗ =
z

max1≤i≤N (zi)−min1≤i≤N (zi)
(6)

Calculate and Scale the Distance:
Finally, for each anchor object, we calculate the distance
from the target object on the xy-plane and scale
it, so that the anchor object with maximum distance
max1≤i≤N∥dxy,i∥2 is normalized to 1. As shown in
Eq. (7).

d∗xy =
dxy

max1≤i≤N (dxy,i)
(7)

D. Target Category Score Extraction
In our 3D visual grounding model, accurately identifying

the target category scores stands as a fundamental
component. Importantly, the model is designed to ensure
that the object scores are updated independently of other
model aspects, including the spatial module and the fusion
module, during backpropagation. This focused approach



in training is essential to maintain the precision and
reliability of the model’s output. By doing so, we safeguard
the model’s ability to discern and enhance its category
recognition capabilities effectively, without interference
from the other learning processes occurring simultaneously
within the model’s framework.

D.1. BERT [CLS] for Classification

In our model, we utilize the auxiliary loss term
Ltext along with the [CLS] token representation from a
pre-trained BERT model for training and identifying the
target category mentioned in the textual description. This
method achieves an accuracy rate of approximately 92.5%
in correctly identifying the target category, highlighting the
effectiveness of the [CLS] token. For a predefined set of
Nc object categories, our classifier, which comprises MLP
layers, outputs logits for these Nc categories, denoted as
Lcls, as defined in Eq. (8).

Lcls = {Li | Li ∈ R, i = 1, 2, . . . , Nc} (8)

Here, Lcls represents a set of scores, where each element Li

denotes the score for the i-th category. These scores reflect
the model’s assessment of how well each object matches a
category based on the textual description.

D.2. Determination of Target Category

The index of the target category is determined using
Eq. (9). This procedure identifies the index with the
maximum logit value in Lcls, signifying the category most
likely to be the target as per the textual description. This
identified index is then utilized to extract the corresponding
target category score for each object in the scene.

I = argmax(Lcls) (9)

D.3. Visual Data Processing

In a 3D space with N objects, the object classifier CLF
utilizes the scene-aware object encoder’s output Osa to
calculate a score matrix C ∈ RN×Nc , as defined in Eq. (10).
Each row in the matrix, Cj , corresponds to Nc category
scores for the j-th object. The classifier CLF employs a
multi-layer perceptron (MLP) to perform this task.

Cj = CLF(Osa
j ) (10)

D.4. Extraction of Category Scores for Objects

For each object in the visual scene, the target category
score is determined by the corresponding score from the
object classifier’s output, indexed by the target category
index. This is represented as Eq. (11)

S = {Sj | Sj = Cj,I , j = 1, 2, . . . , N} (11)

In this expression, S denotes the set of target category
scores, with each Sj being the score for the j-th object, as
determined by the target category index I and the object
classifier’s output Cj,I . This method assigns a score to each
object, indicating its match level with the identified target
category.

E. Hyperparameter Selection
Selecting the right hyperparameters is crucial in

optimizing the performance of our models. In this section,
we discuss the hyperparameter selection process for two
critical components of our model: Multi-Modal Predictions
Fusion and the Loss Function. We explore how varying
hyperparameters influence the fusion of different data
modalities and the effectiveness of our loss function. This
careful calibration is aimed at achieving the best balance
between these elements, thereby enhancing the model’s
overall accuracy and robustness.

E.1. Multi-Modal Predictions Fusion

In Section 3.5, we introduce a fusion method delineated
in Eq. (7). These hyperparameters are crucial for the
optimization of our model. Fig. 1 demonstrates the model’s
accuracy across 100 epochs for different configurations of
λ and µ, where λ is the weight of the spatial score and
µ is the weight for the category score. Our empirical
results suggest that the model’s performance is robust for
parameter settings where λ and µ are not significantly
disparate. A noteworthy observation is that settings with
moderately high but comparable values of both λ and
µ manage to maintain stability in accuracy. However,
increasing the discrepancy between λ and µ, especially
with λ as high as 10, leads to a marked decline in
performance. These insights accentuate the necessity of
balanced hyperparameter tuning to harness the full potential
of our fusion approach effectively.

E.2. Loss Function

In Section 3.5, we introduce our loss function in Eq.(8),
which incorporates the hyperparameters α, β, and γ.
Through experimentation with various configurations of
these hyperparameters, as shown in Fig. 2, we observed
that our model exhibits considerable robustness in its
performance, particularly with variations in α and γ.
The results, as depicted in the accompanying figure,
demonstrate that the accuracy remains relatively stable
across a range of values for α and γ, indicating the
model’s insensitivity to these parameters. However, a
noticeable decline in performance is observed when β
is reduced from 1 to 0.1, suggesting that β plays a
more critical role in the loss function’s efficacy. This
underscores the importance of β in our model’s training and
implies that while some hyperparameters can be adjusted
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Figure 1. Model accuracy across different hyperparameter settings
for λ (spatial score weight) and µ (category score weight). The
model maintains robust performance when the values of λ and µ
are relatively balanced.
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Figure 2. Model accuracy for varied hyperparameter settings
of α, β, and γ. The model shows overall robustness to these
hyperparameter adjustments, particularly for α and γ.

with minimal impact, others require careful calibration to
maintain optimal performance.

F. Layer Ablation Study

In this section, we present an ablation study to
investigate the influence of various layer configurations
on model performance. To facilitate a fair comparison
with established model [4], we have preserved the standard

configuration of PointNet++ and the pre-trained BERT.
While it remains uncertain whether a higher number of
layers might yield further improvements, we have not
pursued such configurations due to computational resource
limitations and hardware constraints.

F.1. Scene-Aware Object Encoder

The results from Table 5, based on experiments with the
Nr3D dataset, show a consistent performance of our model
across various layer configurations in the scene-aware
object encoder. The overall accuracy and sub-category
performances like Easy, Hard, VD, and VI remain relatively
steady, regardless of the number of layers. Notably, the
highest accuracy is at 2 layers (64.4%), but the variance
is marginal compared to other configurations. This pattern
suggests that adding more layers, up to four, doesn’t
significantly improve the model’s performance. Such
stability in results across different layer numbers highlights
the robustness of our model, suggesting it can be effective
without extensive layer adjustments.

Layers Overall1 Easy Hard VD VI
1 63.6% 68.8% 58.6% 63.3% 63.8%
2 64.4% 69.7% 59.4% 65.4% 64.0%
3 64.1% 69.4% 59.0% 64.0% 64.2%
4 62.6% 68.1% 57.3% 62.3% 62.7%

Table 5. Comparison of result accuracy for different numbers of
layers in the scene-aware object encoder. All experiments were
conducted on the Nr3D dataset.

F.2. Fusion Module

In Table 6, using data from the Nr3D dataset, we see
how different numbers of layers in the fusion module
affect our model’s performance. With just 1 layer, the
model’s accuracy is lower, especially in the Hard and
view-dependent (VD) categories. This suggests that a
single layer might not be enough for complex tasks. A
notable point is the big drop in accuracy with 6 layers in
all categories, which also requires more training time and
resources. This indicates that too many layers can harm the
model, because of overfitting or unnecessary complexity.
The best results are seen with 2 to 4 layers, with 3 layers
performing the best in Hard and VD categories. This shows
that a balance in the number of layers is key for good
performance without using too many resources.



Layers Overall1 Easy Hard VD VI
1 62.4% 68.8% 56.3% 62.0% 62.6%
2 63.5% 69.8% 57.4% 62.7% 63.9%
3 64.4% 69.7% 59.4% 65.4% 64.0%
4 63.8% 70.5% 57.4% 63.2% 64.1%
6 58.9% 65.3% 52.7% 59.6% 58.5%

Table 6. Comparison of result accuracy for different numbers of
layers in the fusion module. All experiments were conducted on
the Nr3D dataset.
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Figure 3. Comparative training curves highlighting early
convergence and superior stability. Our model reaches superior
performance within 7 epochs, as indicated by the labeled curves.

G. Extended Results Analysis

This section presents a comprehensive analysis of
our model, examining its performance from multiple
perspectives. In Sec. G.1, we not only highlight the
model’s rapid convergence and stable training but also
compare its efficiency against standard benchmarks. This
subsection emphasizes the robustness of our approach
in the initial phases of learning. Moving to Sec. G.2,
we delve deeper into the model’s processing of different
scores, providing insights into the nuanced decision-making
mechanisms at play and how they contribute to overall
accuracy. Sec. G.3 showcases the model’s ability to adeptly
handle viewpoint variations, demonstrating its flexibility
and sophistication in complex visual environments. Finally,
in Sec. G.4, we engage in a critical examination of
instances where the model underperforms, exploring these
scenarios to pinpoint limitations and propose potential
avenues for future enhancements, thereby strengthening our
understanding of the model’s capabilities and boundaries.

G.1. Early Convergence and Superior Stability

Fig. 3 illustrates the comparative training dynamics
of our model against MVT [4]. Despite sharing the
same configuration in object and text encoders, our
model demonstrates a notable smoothness in its training
curve, indicative of enhanced stability during the learning
process. This is particularly evident in the early stages of
training, where our approach achieves superior performance
benchmarks. Impressively, our model reaches superior
performance within 7 epochs.

G.2. Interplay of Category & Spatial Scores

In examining Tab. 7, the model trained on the Nr3D
dataset reveals a nuanced interplay between category and
spatial scores in its decision-making mechanism. This
uncovers interesting patterns and unexpected anomalies,
offering insights into the complex cognitive strategies
employed by the model in reference identification.

G.2.1 Correctly Predicted Target

The analysis of the Nr3D dataset reveals instances
labeled as “Correctly Predicted Target”, where the model
demonstrates accurate referencing of targets. Intriguingly,
in 97.4% of the cases, the spatial score provides the
correct answer. This accuracy is maintained even in
cases where the targets do not attain the highest category
score, owing to the corrective influence of the spatial
score. This finding illustrates the crucial role of spatial
insight within the model, particularly when the clarity in
categorical identification is ambiguous, and it emphasizes
the harmonious interplay between category and spatial
scores in achieving correct target predictions.

On the other hand, there are occurrences where the
spatial score is not dominant (2.6%), but the robust
category score rectifies. This reciprocity between
categorical recognition and spatial localization in the
model’s architecture is pivotal, allowing the model to
uphold its accuracy even amidst ambiguity.

Moreover, about 3.39% of cases marked as “Correctly
Predicted Target” don’t secure a position within the top
6 category scores. This suggests the model’s capability
to accurately identify targets even without a definite
categorical conviction, illuminating the multifaceted and
nuanced decision-making process of the model.

G.2.2 Incorrectly Predicted Target

Before exploring cases classified as “Incorrectly Predicted
Target”, it is important to clarify that this term refers to
the scores assigned by the model to the correct ground
truth targets that were not selected, rather than the scores
of the incorrect objects that the model erroneously chose.



Correctly Predicted Target Incorrectly Predicted Target
NrsD Sr3D NrsD Sr3D

Top 1 Top 3 Top 6 Top 1 Top 3 Top 6 Top 1 Top 3 Top 6 Top 1 Top 3 Top 6
Category Score 42.0% 85.9% 96.7% 48.5% 96.0% 99.1% 25.0% 60.9% 80.9% 21.4% 65.3% 80.7%
Spatial Score 97.4% 99.9% 99.9% 98.2% 99.9% 100% 3.1% 36.4% 39.4% 3.6% 42.9% 47.2%

Table 7. A summary of model performance based on category and spatial scores for the NrsD and Sr3D datasets. The table presents
the proportion of correctly and incorrectly predicted targets that achieved Top 1, Top 3, and Top 6 scores in both category and spatial
assessments. These results provide insights into the model’s decision-making process and emphasize the interplay between categorical
recognition and spatial understanding in predicting object references.

Analyzing how the actual targets scored when the model
did not select them provides profound insights into the
model’s cognition during incorrect references. For example,
36.4% of these are within the top 3 spatial scores. This
pattern suggests that, in these instances, the model tends to
be proximal to the correct spatial localization but fails to
distinguish the true target from other distractors effectively.
This frequent proximity to correct spatial localization
implies the presence of refined spatial awareness in the
model; however, the inability to differentiate targets
accurately in such situations points to potential areas for
improvement in the spatial encoding mechanism. This
examination reveals the nuanced collaboration between
category and spatial scores, showcasing the model’s
aptitude in resolving uncertainties and ensuring accurate
referencing, even when clear certainties in category or
space are lacking. The insights gained spotlight the
model’s flexibility and sophisticated approach to 3D visual
grounding. Importantly, this analysis not only enhances
our understanding of the decision-making process but
also guides refinements, allowing investigations into which
scores may have failed, and fostering advancements in
scenarios where spatial information is ambiguous, thus
contributing to the model’s explainability and improvement.

G.3. View-Dependent Samples

In Fig. 4, we display the capability of our model
in handling view-dependent scenarios, emphasizing its
precision in adapting to varying viewpoints. These
examples are particularly illustrative of the effectiveness
of our multi-key-anchor technique and the spatial module.
By accurately recalibrating the interpretation of spatial
relationships and object positions in response to changes
in perspective, our model demonstrates its robustness and
versatility. This adaptability, pivotal in dynamic visual
environments, showcases the strengths of our approach in
3D visual grounding, validating the model’s suitability for
complex, real-world applications.

G.4. Analysis of Model Limitations: Failed Samples

G.4.1 Complex Scenes

Complex scenes pose a challenge due to their dense
information and often ambiguous spatial details. These

scenarios require the model to differentiate and accurately
identify objects amidst a multitude of overlapping or closely
situated elements. Figure 5a showcases examples of such
complex scenes.

G.4.2 Non-Rigid Subjects: Animals & Humans

Non-rigid subjects like animals and humans present a
unique challenge due to their variable shapes and postures.
The model’s ability to recognize and categorize these
subjects is often hindered by limited training data and the
inherent flexibility of these subjects. Figures 5b to 5d
demonstrate instances involving these non-rigid subjects.

G.4.3 Action-Oriented Descriptions

Interpreting action-oriented descriptions such as “laying” or
“sitting” is a challenge for existing models, which currently
lacks the capability to contextualize how humans interact
with objects in performing these actions. For example,
understanding phrases like “laying on the bed” involves
not just recognizing the bed but also comprehending the
typical orientation of a person on it. This advanced level
of contextual understanding, especially in human-object
interactions, remains a developmental goal for our model.
Figures 5d to 5f provide illustrations of such scenarios.

G.4.4 Symbolic and Textual Details

Processing symbolic and textual details, such as logos,
signs, or written text on objects, is a complex task that our
model struggles with. This limitation affects the model’s
ability to interpret directives involving object identification
based on such details. Figures 5g to 5i provide examples
of this challenge. These cases collectively underscore
the importance of developing more sophisticated training
strategies. Enriching the dataset and enhancing the model’s
capability to process complex contextual, symbolic, and
textual information is key to advancing its proficiency in
3D visual grounding tasks.



(a) “The couch along the wall and on the left
hand side of the other couches, when you are
facing the group of couches.”

(b) “Facing fridge, this cabinet is middle of the
three upper cabinets to the right.”

(c) “Facing the door, the desk on the right
side.”

(d) “Facing the row of 4 chairs, it’s (the chair)
furthest left.”

(e) “Facing the windows, chose the center desk
under the clock.”

(f) “If you are facing the bed, it is the pillow in
the back, on the right.”

(g) “When you are facing the white board, look
at the 3 desks on your right and pick the one in
the middle.”

(h) “If you are facing the bookshelves, it is the
window on the left.”

(i) “If you are facing the three windows on one
wall, it is the window on the left.”

Figure 4. Examples of view-dependent scenarios. In these illustrations, the target categories are indicated with purple markings, and the
objects used as anchors for locating these targets are highlighted in orange. The green bounding box refers to the correctly chosen object,
and the red bounding box refers to the unchosen distractors.



(a) “In the middle of the room is a beige cart.
square, top has papers on it and bottom shelf is
empty.”

(b) “2 white dogs sitting at the person’s feet.” (c) “The taller person sitting on the left side of
the couch when you are facing it.”

(d) “The black chair facing the chair with a
person in it.”

(e) “If you are laying in bed with your head by
the headboard, it is the light that is just above
the bed and to the left.”

(f) “There are two pillows by the headboard of
the bed. If you are laying in bed, it is the pillow
on the left side.”

(g) “Facing the picture with blue sky, clouds
and yellow flowers, choose the computer tower
furthest to the right of the room.”

(h) “The box that has a FedEx label on it.” (i) “The trash can is near the hallway with the
logo on the wall. It’s the one on the left.”

Figure 5. A collection of challenging scenarios where the model demonstrates limitations. Featured are complex scenes with ambiguous
spatial details, difficulties in recognizing animals and humans due to limited training data and non-rigidity, and challenges in interpreting
action-oriented descriptions and textual/symbolic details on objects. These examples highlight key areas for the model’s further
development and refinement. In these illustrations, the target categories are indicated with purple markings, and the objects used as
anchors for locating these targets are highlighted in orange. The yellow bounding boxes refer to the ground truth, the green bounding boxes
refer to the chosen objects, and the red bounding boxes refer to the unchosen distractors.
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