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In the supplementary material, we provide details of Qc

and Qth in Eqns. (1) and (2) (Sec. 3.1), detailed deriva-
tion of Eqn. (6) (Sec. 3.2), details of the validation on the
analysis using real-captured spikings (Sec. 3.2), additional
implementation details (Sec. 4.3), and additional results on
synthetic and real-synthetic data (Sec. 5). We further provide
a supplementary video to show the HDR and HFR videos
corresponding to Figs. 1, 8, 9, 10, 13, and 14.

7. Details of Qc and Qth

As mentioned in Sec. 3.1, Qc(t) consists of three compo-
nents: the accumulated electrons Qa in the previous interval,
the photo-generated electrons Qp, and the dark electrons Qd

accumulated in the current interval. Qa(t) is determined by
the readout spiking of the previous interval, and it can be
expressed as

Qa(t) =

{
Qc(t− 1), if SL(t− 1) = 0,

0, if SL(t− 1) ≥ 1 or t = 0.
(14)

The probability distribution of Qp(t) has been given by
Eqn. (8) in the main paper. Qd(t) is obtained by integrating
the dark current Id over the interval τ . We model Id as a
spatially correlated Gaussian distribution:

Id ∼ N (µd, σ
2
d). (15)

Due to the limited precision of the readout circuit, the readout
value of Qd exhibits small deviations from the actual value.
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Here, we assume the readout value is obtained by rounding
the actual value. For other parameters with similar situations,
we adopt the same assumption as Qd. Then, for any k ∈ Z,
we have

P(Qd(t) = k) = P(k − 1

2
≤ Idτ < k +

1

2
),

=

∫ (k+0.5)/τ

(k−0.5)/τ

1√
2πσd

exp(− (x− µd)
2

2σ2
d

)dx.

(16)
Without considering noise, we have Qth = C · V , where

C is the capacitance of the capacitor and V is the voltage
on the capacitor. Real-world spikings are affected by noise,
and the noise is generated by deviation of the capacitor
capacitance CS , the voltage deviation V S when resetting
the voltage, and the voltage deviation V T0(t) caused by
temperature. The three types of noise are independent of
each other, and they all follow Gaussian distributions:

CS ∼ N (0, σ2
cs),

V S ∼ N (0, σ2
vs),

V T0(t) ∼ N (0, σ2
vt0).

(17)

Thus, the noise-affected Qth is

Qth = (C + CS)(V + V S + V T0). (18)

Let
Qr = C · V, (19)

and
Qb = (C + CS)(V S + V T0) + CSV, (20)
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then Qth = Qr+Qb. As Qr is a constant, the distribution of
Qth is determined by the distribution of Qb. For any Q ∈ Z,
we have

P(Qb = Q) = P(Q− 0.5 ≤ Qb < Q+ 0.5). (21)

Let V1 = V S and V2 = V T0 .We can establish a mapping
from (Qb, V1, V2) to (CS , V S , V T0), and represent the cor-
responding function relationships as h1(·), h2(·), and h3(·)
respectively

CS = h1(Qb, V1, V2) =
Qb − C(V1 + V2)

V + V1 + V2
,

V S = h2(Qb, V1, V2) = V1,

V T0 = h3(Qb, V1, V2) = V2.

(22)

Let f(cs, vs, vt0) denote the joint probability density of
the random variables (CS , V S , V T0). Since CS , V S , and
V T0 are independent of each other, f(cs, vs, vt0) can be
expressed as

f(cs, vs, vt0) = G(cs, σ
2
cs)G(vs, σ

2
vs)G(vt0 , σ

2
vt0), (23)

where G(x, σ2) = (
√
2πσ)−1 exp(− x2

2σ2 ).
Denote l(qb, v1, v2) as the joint probability density of the

random variables (Qb, V1, V2), it can be expressed as

l(qb, v1, v2) = f(cs, vs, vt0)|J(qb, v1, v2)|,

= f(
qb − C(v1 + v2)

V + v1 + v2
, v1, v2)|J(qb, v1, v2)|,

(24)
where J(qb, v1, v2) is the Jacobian determinant:

J(qb, v1, v2) =

∣∣∣∣∣∣∣∣
∂h1

∂qb
∂h1

∂v1

∂h1

∂v2
∂h2

∂qb
∂h2

∂v1

∂h2

∂v2
∂h3

∂qb
∂h3

∂v1

∂h3

∂v2

∣∣∣∣∣∣∣∣ =
1

V + v1 + v2
. (25)

The probability density function of Qb is

fQb
(qb) =

∫ +∞

−∞

∫ +∞

−∞
l(qb, v1, v2)dv1dv2. (26)

Then for any Q′ ∈ Z, the probability of Qth being Q′ is

P(Qth = Q′) = P(Qb = Q′ −Qr)

=

∫ Q′−Qr+0.5

Q′−Qr−0.5

fQb
(qb)dqb.

(27)

8. Explanations of information inheritance
The concept of information inheritance of a spiking camera
comes from one of its characteristics. Taking the relationship
between two adjacent intervals as an example. The accumu-
lated electrons will reserve to the next interval if no spiking

is emitted in the current interval, thus increasing the prob-
ability of emitting a spiking in the next interval. After a
spiking is emitted in the current interval, electrons in the
next interval start accumulating from zero, which results in a
decreased probability of emitting spikings. This mechanism
of information transmission imposes mutual constraints be-
tween consecutive intervals, leading to a relatively stable
number of emitted spikings and consequently lower variance
compared to when intervals are independent of each other.
The mathematical proof is given below.

We start with the definition of the variance of SL
N . We

have

Var(SL
N ) = Var(

N∑
i=1

SL
i )

=

N∑
i=1

Var(SL
i ) + 2

N∑
j=i+1

Cov(SL
i , S

L
j )

 .

(28)
Here, SL

i represents the i-th spiking in a spiking sequence.
For any i, j ∈ [1, N ] and i < j, we have

Cov(SL
i , S

L
j ) = E(SL

i S
L
j )− E(SL

i )E(SL
j ). (29)

E(SL
i S

L
j ) can be expressed as

E(SL
i S

L
j ) =

L∑
a=0

L∑
b=0

abP(SL
i = a, SL

j = b)

=

L∑
a=1

L∑
b=1

abP(SL
i = a, SL

j = b)

=

L∑
a=1

L∑
b=1

abP(SL
j = b|SL

i = a)P(SL
i = a).

(30)
For P(SL

j = b|SL
i = a), the condition is such that, when the

i-th interval emits a spiking, the accumulated electrons will
reset to zero at the end of the i-th accumulation interval for
any a ≥ 1. This means that the result of this expression is
independent of the specific value of a, and is equivalent to
P (SL

j = b|SL
i ̸= 0). Then we have

E(SL
i S

L
j ) =

L∑
a=1

L∑
b=1

abP(SL
j = b|SL

i ̸= 0)P(SL
i = a)

=

L∑
a=1

aP(SL
i = a) ·

L∑
b=1

bP(SL
j = b|SL

i ̸= 0)

= E(SL
i )E(SL

j |SL
i ̸= 0).

(31)
Then Cov(SL

i S
L
j ) can be expressed as

Cov(SL
i , S

L
j ) = E(SL

i )E(SL
j |SL

i ̸= 0)− E(SL
i )E(SL

j )

= E(SL
i )

[
E(SL

j |SL
i ̸= 0)− E(SL

j )
]
.

(32)



Now let’s add up covariance terms:

N∑
j=i+1

Cov(SL
i , S

L
j )

=E(SL
i )

E( N∑
j=i+1

SL
j |SL

i ̸= 0)− E(
N∑

j=i+1

SL
j )

 .

(33)

In Eqn. (33), the E(
∑N

j=i+1 S
L
j ) expression calculates the

expected number of spikings emitted from the (i + 1)-th
to the N th interval, where the initial electron count in the
(i + 1)-th interval is one of the values in [0, Q/L) follow-
ing a certain distribution. The condition (Si ̸= 0) ensures
that the initial electron count in the (i + 1)-th interval is
always zero. The E(

∑N
j=i+1 S

L
j |SL

i ̸= 0) expression is
at a disadvantage in terms of initial electron count com-
pared to E(

∑N
j=i+1 S

L
j ), resulting in a smaller expected

number of spikings emitted. Combining E(SL
i ) ≥ 0, we ob-

tain
∑N

j=i+1 Cov(S
L
i , S

L
j ) ≤ 0. Substituting this inequality

into Eqn. (28), we obtain

Var(SL
N ) ≤

N∑
i=1

Var(SL
i ) = N ·Var(SL). (34)

9. Detailed derivation of Eqn. (6)
The presence of noise has an influence on both Qth and Qd,
subsequently affecting SL. The probability distribution of
SL varies with different levels of noise. Here, the utilization
of conditional probability is capable of solving the calcula-
tion of P (SL = H). For P(SL = H|Qth = Q′, Qd = k)
and P(Qth = Q′, Qd = k), we simply denote them as
PSL(H|Q′, k) and P(Q′, k). According to the law of total
probability, we have

P(SL = H) =

∞∑
Q′=−∞

∞∑
k=−∞

PSL(H|Q′, k)P(Q′, k).

(35)
Since Qth and Qd are independent of each other, we have

P(Q′, k) = PQ′Pk. (36)

Now we derive the expression for PSL(H|Q′, k). Define
{SL} as a sequence of spikings readout from N intervals,
and L is the quantization level of the spiking signal. We
assume the number that occurs the spiking signal H is NH ,
then

PSL(H|Q′, k) = lim
N→∞

NH

N
. (37)

{SL} is composed of a series of accumulation sequences.
The accumulation sequence is defined by the condition when
a pixel begins to accumulate electrons with an initial state
of zero accumulated electrons, after accumulating n − 1

intervals, it finally emits h spikings. We then collect these
signals to obtain an accumulation sequence of length n:

{Ah
n} = 0, 0, · · · , 0,︸ ︷︷ ︸

n−1

h. (38)

In the sequence {SL}, the number of occurrences of {Ah
n}

is denoted as R({Ah
n}). Then, the total length of the spiking

sequence SL is the sum of the product of R({Ah
n}) and the

length of all possible accumulation sequences:

N =

L∑
h=1

∞∑
n=1

n R({Ah
n}). (39)

The total number of accumulation sequences that emit H
spikings represents the number of times H spikings are
emitted in the SL

n sequence, that is

NH =

∞∑
n=1

R({AH
n }). (40)

Substituting the above two equations into Eqn. (37), we have

PSL(H|Q′, k) =

∑∞
n=1 R({AH

n })∑L
h=1

∑∞
n=1 n R({Ah

n})
. (41)

The proportion of R({Ah
n}) in all accumulation sequences

is the probability of its occurrence

P({AH
n }) = R({AH

n })∑L
h=1

∑∞
n=1 R({Ah

n})
, (42)

which is equivalent to PH
n in Eqn. (7).

Divide the numerator and denominator of Eqn. (41) by∑L
h=1

∑∞
n=1 R({Ah

n}), we get

PSL(H|Q′, k) =

∑∞
n=1 P({AH

n })∑L
h=1

∑∞
n=1 n P({Ah

n})

=

∑∞
n=1 P

H
n∑L

h=1

∑∞
n=1 nP

h
n

.
(43)

By substituting equation Eqns. (36) and (43) into Eqn. (35),
we get Eqn. (6).

10. Validation on real-captured spikings
To validate the correctness of Eqn. (4) and Eqn. (5), we cal-
culate the expectation and variance of real-captured spikings.
For a spiking sequence {SL} of length N , we normalize the
spiking readout values to [0, 1], and then the expectation of
the normalized spiking sequence is driven by

µ =
1

N

N∑
i=1

SL
i

L
, (44)
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Figure 11. 30 images taken by a spiking camera under varying exposure conditions of the same scene. We use Eqn. (44) to obtain the average
value of each pixel to reconstruct the image. The number above each image is the average exposure for all pixels. The unit of exposures is
photon/(µm2 · s).
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Figure 12. (a) and (b) are the curves of expectation and standard
deviation, respectively. The curve plotted with theoretical analysis
is represented by solid lines. The spikings generated by our simula-
tor are marked with dots. The unit for the exposure is the number
of photons per interval per pixel.

where SL
i denotes the i-th spiking in {SL}. The variance is

driven by

σ2 =
1

N

N∑
i=1

(
SL
i

L
− µ)2. (45)

The real-captured spikings are collected in a dark room
(0LUX). The positions of all the objects and the light source
remain fixed, while the intensity of the light is adjustable.
We establish 30 exposure levels for the light source, and use
a 1-bit spiking camera to capture the spikings that emitted
within one second. In this way, we obtain 30 sets of spiking
sequences with the size of (1000× 1000)× 20, 000 under
varying exposure levels. Then, as shown in Fig. 11, we recon-
struct 30 images using Eqn. (44). We use Eqns. (44) and (45)
to calculate the expectation and variance, then use Eqns. (4)
and (5) to perform curve fitting on the real-captured spikings,
and the obtained results are shown in Fig. 2.

We further design a simulator for the multi-bit spiking
camera to validate the characteristics of multi-bit spikings.

The simulator restores the possible noise of the multi-bit
spiking camera, and we simulate the process of the accu-
mulation of photon-generated electrons and the emission of
spikings. In the multi-bit spiking simulator, we set Qr = 104,
Qb = 1, Qd = 0.005, and set 30 evenly distributed exposure
levels. We also collect 20,000 spikings fired within 1 second.
In our theoretical formulations, we set Qr = 105, µd as
0.05, and set the variance of all noise distributions to 0.005.
The curves under this setting and the spikings are shown
in the Fig. 12. The theoretical formulations are capable of
fitting the simulated spikings. In the future, we anticipate an
update to the multi-bit readout mechanism, enabling us to
achieve more compelling validation.

11. Additional implementation details

About the RMB spikings, we set the size of the spiking
plane to be 500 × 500. At each readout point, we read out
4× 500 three-bit spikings and 496× 500 single-bit spikings.
For the following readout point, the indices of the three-bit
spikings are shifted downward by two lines. The encoder
that is used to extract multi-scale features from Is(i) con-
tains three blocks. Each block of the encoder contains two
convolutional layers and a 2×2 maxpooling layer. Each con-
volutional layer is followed by batch normalization [3] and
ReLU [1]. The kernel size of all the convolutional layers is
5× 5. The output channels of the three blocks in the encoder
are 24, 32, and 48, respectively. The encoder for extracting
multi-scale features from Im(i) is nearly the same, with the
exception of the input channel of the first convolutional layer.
As for the cross-bit attention block, we first employ cyclic
shift to obtain (2×w+1)2 feature pairs, and concatenate all
the feature pairs. Then, we utilize two convolutional layers
to learn the weight masks. The cross-time attention is simi-



HDR scene TFW-S TFI Spk2ImgNet GC20 MG20 Ours GT

spikings

Figure 13. Additional visual equality comparison of synthetic data between the proposed method and compared methods: TFW-S [7],
TFI [7], Spk2ImgNet [6], GC20 [2], and MG20 [5]. The HDR scene is captured by alternating exposures.
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Figure 14. Additional visual equality comparison of real-synthetic data. The four frames captured by iPhone13 are used to illustrate HDR
scenes.

lar to the cross-bit attention, and the difference is described
in Eqn. (12). We implement our model with PyTorch, and
use ADAM optimizer [4] during the training process. We
adopt two NVIDIA GeForce RTX 3090 to train our model.

12. Additional qualitative results

In this section, we present additional visual comparisons
on synthetic and real-synthetic data. As shown in Fig. 13,
the results generated by TFW [7], TFI [7], GC20 [5] and
MG20 [5] are noise-contaminated. The textures in the output
generated by Spk2ImgNet [6] lack richness. Conversely, our
method yields better texture details in the output. In Fig. 14
(a), we propel a volleyball towards the ground, with a bright
LED array in the background. Our method outperforms the
comparison methods in reconstructing the texture details on
the volleyball. In Fig. 14 (b), we pour a cup of Cola into a
transparent glass. Despite the deep color of the Cola, our
method is still able to reconstruct the details of the flowing
liquid.

Spk2ImgNet GC20 MG20

S M M MS S

iPhone13

Pure-MOurs Pure-S

Figure 15. Results on more challenging scenes. We input pure-
single-bit and pure-multi-bit spikings to the compared methods,
and the results are denoted by “S” and “M” correspondingly.

In Fig. 15, we present a set of results obtained from real-
synthetic data captured in the condition involving both rapid
camera shake and object motions. For results display pur-
poses, we uniformly select 1

5 from the total 290 frames,
which demonstrates the effectiveness of our approach in han-



Table 4. The performance of compared methods with the input of
pure-single-bit and pure-multi-bit spikings.

Method
Metric

PSNR↑ SSIM↑ HDR-VDP3↑ HDR-VQM↓

TFW-S 9.12/14.48 0.411/0.592 6.241/6.803 0.932/0.852
TFW-L 13.21/15.26 0.775/0.802 7.458/7.743 0.631/0.562

TFI 17.22/—– 0.693/—- 7.125//—- 0.854/—-
Spk2ImgNet 16.02/20.90 0.724/0.816 7.639/7.983 0.741/0.606

GC20 19.09/22.58 0.811/0.843 7.333/7.702 0.616/0.564
MG20 16.21/20.73 0.743/0.792 7.619/7.952 0.745/0.633
Ours 19.37/26.62 0.867/0.904 7.502/8.182 0.315/0.084

dling more challenging scenes. We additionally show the fair
comparison on real-synthetic data in this figure. The results
obtained from pure single-bit and pure multi-bit data are
denoted by “S” and “M” correspondingly.

For more comprehensive comparison, we input pure
single-bit and pure multi-bit spikings to compared meth-
ods. The quantitative evaluation is presented in Table 4. In
this table, we use “/” to separate the scores corresponding to
pure single-bit and pure multi-bit spikings. TFI does not sup-
port pure multi-bit input. The results demonstrating that even
under identical input conditions, our approach still achieves
competitive performance.

13. Limitations

It is noted that high dynamic range in high-speed scenes is
a relative concept since the photons accumulated within an
extremely short period are limited. Improving the dynamic
range as much as possible without reducing the frame rate
is worth exploring. Since the spiking camera available to
us has not undergone hardware upgrades to enable the pro-
posed RMB readout mechanism, the real data simulation
is conducted through spatial and temporal aggregation. We
anticipate a hardware update in the upcoming future, which
will facilitate more realistic validations of our method.
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