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1. Ablation study
In this section, we conduct an ablation study to investigate
the performance of the proposed CertSR method by remov-
ing each of the two main components to understand their
contribution to the overall method. Specifically, we ex-
plore the effects of both the Median Randomized Smooth-
ing (MRS) fine-tuning phase and the MRS inference phase
(see Figure 2 in the main paper) and compare them with the
global method that includes both (CertSR). In Table 1, we
report the results of this study. We observe that both MRS
components have a slight positive impact on the SR model.
However, together these two components give much better
results, leading us to the proposed method, CertSR.

We note that ”ESRGAN” indicates the fine-tuning
of ESRGAN [11] on the DIV2K dataset [1]. The
”ESRGAN+MRSFT ” method involves fine-tuning the ES-
RGAN model using only Median Randomized Smoothing
(MRS), while ”ESRGAN+MRSInf” indicates the use di-
rectly of MRS in the inference phase of ESRGAN. Fi-
nally, CertSR is a combination of ”ESRGAN+MRSFT ” and
”ESRGAN+MRSInf”.

Dataset Metrics SR Methods

ESRGAN ESRGAN+MRSFT ESRGAN +MRSInf CertSR

AIM
PSNR ↑ 21.95 21.88 21.97 21.75
SSIM ↑ 0.55 0.56 0.53 0.59
LPIPS ↓ 0.51 0.47 0.48 0.33

NTIRE
PSNR ↑ 21.94 26.90 22.16 26.67
SSIM ↑ 0.39 0.69 0.40 0.71
LPIPS ↓ 0.56 0.22 0.55 0.21

Table 1. Ablation study. We present the comparison of reference
metrics between our method and each of their component indepen-
dently. Red and blue colors highlight the best two scores.

Firstly, by examining Table 1, we observe an enhance-
ment in the performance of ”ESRGAN+MRSFT ” com-
pared to ”ESRGAN.” This improvement is attributed to the
fine-tuning phase where MRS introduces Gaussian random
noise to the input images. This strategy fosters model in-
variance to small changes in the input, consequently en-
hancing generalization to previously unseen data. It is im-
portant to note, that due to the Gaussian data augmentation

utilized in the fine-tuning phase, this method serves as an al-
ternative to regularization in neural networks with the Jaco-
bian of the model [2]. This alternative becomes especially
valuable for SR tasks where applying Jacobian-based regu-
larization is often impractical due to the substantial dimen-
sions of the input and output. Secondly, we observe that
the ”ESRGAN+MRSInf” method also improves the per-
formance of ESRGAN, particularly concerning the LPIPS
metrics. However, this method is not as effective when
applied independently; its efficacy increases notably when
used after ”ESRGAN+MRSFT .” This can be attributed to
the sensitivity of ESRGAN to Gaussian noise.

2. CertSR with other SR models
In this section, we will test our CertSR method on some
other SR models. The purpose of this study is to demon-
strate that our method can enhance the precision and robust-
ness of any SR model. Moreover, this enhancement comes
at no additional cost. For this reason, we choose the SR
models EDSR [7] and NINASR [6]. We will then apply the
certification method to them (see Figure 2 in the main pa-
per). We denote CertEDSR and CertNINASR as the models
EDSR and NINASR after the certification process, respec-
tively. In Table 2, we present the results that we obtained
after and before the certification method on AIM [8] and
NTIRE [1] datasets.

Dataset Metrics SR Methods

EDSR CertEDSR NINASR CertNINASR

AIM
PSNR ↑ 22.57 22.32 22.22 22.24
SSIM ↑ 0.60 0.53 0.59 0.61
LPIPS ↓ 0.60 0.57 0.60 0.49

NTIRE
PSNR ↑ 25.57 26.67 24.79 27.61
SSIM ↑ 0.64 0.70 0.63 0.74
LPIPS ↓ 0.57 0.47 0.57 0.37

Table 2. We show a comparison of reference metrics between two
SR models before and after applying the certification method that
we propose.

In this study, similarly to ESRGAN, we fine-tune both
the EDSR and NINASR models on the DIV2K training
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dataset. This involves applying MRSFT to both models
with identical standard deviations, σ1 = 0.03 and σ1 = 0.2,
corresponding to the Gaussians samples. Next, we apply
MRSinf to both models. To be specific, we draw 21 i.i.d
Gaussians samples with a standard deviation of σ = 0.1
to derive CertEDSR and CertNINASR results on the AIM
dataset. Regarding the results on the NTIRE datasets, we
maintain the same number of draws and we use σ = 0.005.

3. Comparison with RSR via regularization
In this section, we will regularize the ESRGAN neural net-
work with the gradient of the loss function, a well-known
method to ensure the stability of the neural network against
input corruption and perturbation. In addition, this method
allows for penalizing large changes in the output neural net-
work model, enforcing a smoothness prior. This method
has been employed in several works focused on classifica-
tion tasks, as seen in, for instance, [5, 9, 10].

We recall that the loss function used to train or to fine-
tune the ESRGAN is given by

Ltotal = L1,perc + Ladv.

where, L1,perc = L1 + Lperc. Here, L1 loss is the pixel
distance, Lperc is the perceptual loss, and Ladv is the ad-
versarial loss. Due to the gradient regularization that we
will apply, the new total loss function becomes as follows:

Lreg = Ltotal + λ ∗ ∥∇xL1,perc∥, (s1)

where λ is a hyperparameter. It is important to point out that
the method we use in this part is similar to the regularization
used in [4]. Besides, we regularize with the gradient of L1

and Lperc because our aim is to get a robust SR model both
pixel-wise and perceptually.

Dataset Metrics SR Methods

ESRGAN AD-L-PGD ESRGAN-Reg CertSR

AIM
PSNR ↑ 21.91 21.99 21.97 21.75
SSIM ↑ 0.55 0.60 0.55 0.59
LPIPS ↓ 0.51 0.37 0.50 0.33

NTIRE
PSNR ↑ 21.94 24.31 21.69 26.67
SSIM ↑ 0.39 0.65 0.38 0.71
LPIPS ↓ 0.56 0.23 0.57 0.21

Table 3. We present the comparison of reference metrics between
RSR via gradient regularization, RSR via adversarial learning with
PGD attack, ESRGAN and our CertSR

The result given from this study is shown in Table 3,
where we compare this method of regularization, denoted
as ESRGAN-Reg, with other methods such as ADV-L-PGD
[3], constructed via adversarial learning using the PGD at-
tack, ESRGAN fine-tuned in DIV2K, and our CertSR. We
note that in our experiment, the best hyperparameter that

yielded good results is λ = 0.001. On the other hand, from
Table 3, we can deduce that this method of robustness is not
very efficient in the SR task, notably for real-world SR.

4. Hyperparametrs for Median Randomized
Smoothing (MRS)

In this section, we explore the impact of the hyperparame-
ters for the proposed MRS fine-tuning and MRS inference,
as shown in Figure 2 in the main paper.

4.1. Hyperparametrs for MRS fine-tuning

The MRS fine-tuning method has been done on DIV2K
training dataset. However, for the validation of this method,
we did it in AIM and NTIRE validation dataset. We would
like to emphasize that in this phase, we chose two types
of Gaussian samples, with each sample corresponding to a
standard deviation. Additionally, for each Gaussian sample,
we drew it two times randomly. In Table 4 we show the im-
pact of the hyperparameters σ1 and σ2 on the performance
of the MRS fine-tuning phase, validated on the AIM and
NTIRE validation datasets based on LPIPS metric.

Dataset Metric Std σ1
Std σ2

0.01 0.02 0.03 0.04 0.05 0.06

AIM LPIPS

0.1 0.48 0.48 0.48 0.48 0.48 0.48
0.2 0.49 0.48 0.47 0.47 0.48 0.48
0.3 0.48 0.48 0.49 0.48 0.48 0.48
0.4 0.49 0.49 0.48 0.47 0.48 0.48
0.5 0.49 0.48 0.49 0.49 0.48 0.48
0.6 0.48 0.48 0.48 0.48 0.48 0.48

NTIRE LPIPS

0.1 0.30 0.26 0.24 0.23 0.25 0.25
0.2 0.33 0.26 0.22 0.24 0.24 0.25
0.3 0.36 0.27 0.22 0.24 0.24 0.26
0.4 0.37 0.28 0.24 0.26 0.27 0.28
0.5 0.40 0.25 0.22 0.24 0.26 0.30
0.6 0.40 0.27 0.23 0.26 0.27 0.29

Table 4. We report the impact of the hyperparameters σ1 and σ2

on the performance of the MRS fine-tuning phase, validated on the
AIM and NTIRE validation datasets.

4.2. Hyperparametrs for MRS Inference

After the MRS fine-tuning, We represent the performance
of the MRS inference against the adversarial attacks on
the DIV2K validation dataset and the real-world validation
datasets.

In Table 5, we show the impact of the hyperparameter
σ on the performance of MRSinf validated on the AIM
and NTIRE validation datasets based on PSNR, SSIM, and
LPIPS metrics. We point out that the number of draws used
in the inference phase is the same, which is 21.

In Table 6, we present the impact of the hyperparameter
σ on the performance of MRSinf validated on the AIM



attack Metrics Hyperparameter σ

0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

FGSM
PSNR 19.73 19.92 20.73 21.74 22.95 24.11 24.72 24.92 24.92
SSIM 0.35 0.36 0.40 0.46 0.53 0.60 0.64 0.65 0.65
LPIPS 0.48 0.48 0.44 0.39 0.34 0.29 0.27 0.28 0.30

BIM
PSNR 17.38 17.61 18.60 19.72 20.10 22.35 23.53 24.28 24.60
SSIM 0.28 0.29 0.33 0.38 0.45 0.53 0.60 0.64 0.65
LPIPS 0.56 0.55 0.51 0.47 0.41 0.33 0.27 0.25 0.27

PGD
PSNR 22.15 22.68 23.91 24.42 24.62 24.85 25.09 25.19 25.15
SSIM 0.47 0.51 0.60 0.64 0.65 0.66 0.67 0.67 0.68
LPIPS 0.50 0.46 0.38 0.32 0.28 0.25 0.24 0.25 0.28

CW
PSNR 21.69 24.87 26.46 26.66 26.48 26.25 26.09 25.94 25.73
SSIM 0.48 0.58 0.65 0.71 0.72 0.71 0.70 0.69 0.68
LPIPS 0.38 0.22 0.19 0.18 0.18 0.19 0.21 0.24 0.27

Table 5. We present the performance of the MRS inference phase,
on attacked DIV2K validation dataset.

and NTIRE validation datasets based on PSNR, SSIM, and
LPIPS metrics. The number of draws used in the inference
phase is also 21.

Dataset Metrics Hyperparameter σ

0.005 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

AIM
PSNR 21.91 22.07 22.17 22.07 21.90 21.77 21.75 21.98 22.01
SSIM 0.57 0.60 0.61 0.61 0.60 0.59 0.59 0.60 0.60
LPIPS 0.46 0.45 0.42 0.38 0.36 0.34 0.33 0.34 0.36

NTIRE
PSNR 26.86 26.93 27.02 26.67 26.41 26.17 26.29 26.15 25.80
SSIM 0.69 0.70 0.71 0.71 0.70 0.69 0.68 0.68 0.69
LPIPS 0.23 0.22 0.22 0.21 0.21 0.22 0.24 0.27 0.28

Table 6. We report the impact of the hyperparameters σ on the per-
formance of the MRS inference phase, based on reference metrics
validated on the AIM and NTIRE validation datasets.

5. Hyperparameters for adversarial Learning
In this section, we explore the impact of the hyperparame-
ters for the proposed adversarial learning methods based on
adversarial attacks (FGSM, BIM, and CW) that we use to
build RSR models.

5.1. Adversarial Learning with FGSM (AD-L-
FGSM)

In Table 7, we present the results of the AD-L-FGSM model
for different values of the hyperparameter of the FGSM ad-
versarial attack, which is ϵ, representing the step size for
the allowed perturbation. We report results on the AIM and
NTIRE datasets for different metrics, namely PSNR, SSIM,
and LPIPS.

5.2. Adversarial Learning with BIM (AD-L-BIM)

In Table 8, we present the results of the AD-L-BIM model
for different values of the hyperparameters of the BIM ad-
versarial attack. The hyperparameters of this attack are
composed of α, which represent the step of the perturba-
tions are and T the number of iterations. We report the
results on the AIM and NTIRE datasets with respect to dif-
ferent metrics, namely PSNR, SSIM, and LPIPS.

Dataset Metrics Hyperparameter ϵ

1/255 3/255 6/255 9/255 10/255

AIM
PSNR 22.18 22.59 22.64 22.70 22.77
SSIM 0.56 0.60 0.62 0.63 0.62
LPIPS 0.44 0.42 0.43 0.42 0.46

NTIRE
PSNR 22.98 23.50 24.66 25.55 25.50
SSIM 0.46 0.49 0.57 0.65 0.64
LPIPS 0.46 0.44 0.35 0.30 0.32

Table 7. We present the performance of the AD-L-FGSM model
for different values of the hyperparameter ϵ on the AIM and
NTIRE validation datasets with respect to reference metrics.

Dataset Metrics Iteration T
Hyperparameter α

1/255 3/255 6/255 9/255 10/255

AIM

PSNR

2 22.36 18.16 16.87 22.31 17.93
3 22.71 17.89 17.51 17.64 18.03
4 22.26 16.75 18.11 17.85 17.29
5 17.57 16.32 16.44 18.19 19.05

SSIM

2 0.61 0.29 0.29 0.59 0.29
3 0.62 0.39 0.30 0.28 0.35
4 0.60 0.22 0.32 0.29 0.27
5 0.30 0.22 0.21 0.30 0.40

LPIPS

2 0.46 0.68 0.76 0.36 0.73
3 0.45 0.76 0.80 0.86 0.79
4 0.47 0.75 0.70 0.74 0.82
5 0.86 0.87 0.72 0.71 0.63

NTIRE

PSNR

2 25.53 18.37 17.02 25.35 18.62
3 25.62 23.55 17.84 18.31 18.29
4 25.56 18.49 18.59 18.05 17.79
5 17.77 24.06 16.83 18.93 20.03

SSIM

2 0.64 0.23 0.24 0.63 0.28
3 0.65 0.48 0.25 0.27 0.30
4 0.64 0.28 0.28 0.25 0.26
5 0.27 0.51 0.20 0.27 0.40

LPIPS

2 0.34 0.69 0.76 0.26 0.72
3 0.33 0.41 0.77 0.83 0.80
4 0.33 0.76 0.71 0.74 0.80
5 0.85 0.40 0.71 0.70 0.61

Table 8. We present the performance of the AD-L-BIM model for
different values of the hyperparameters α (the step of the adver-
sarial attack) and T (number of iterations) on the AIM and NTIRE
validation datasets with respect to reference metrics.

5.3. Adversarial Learning with CW (AD-L-CW)

In Table 9, we present the results of the AD-L-CW model
for different values of the hyperparameters of the CW ad-
versarial attack. The hyperparameters of this attack are
composed of c, which controls the trade-off between the L2
norm of the perturbation and T the number of iterations to
minimize the following problem:

min
δ

(∥δ∥2−c·L(fθ(x), y)), such that x+δ ∈ [0, 1]n. (s2)

We report the results on the AIM and NTIRE datasets
with respect to different metrics, namely PSNR, SSIM, and
LPIPS.



Dataset Metrics Iterations T Hyperparameter c

10−2 1

AIM

PSNR

1 21.51 4.60
2 5.35 4.59
3 4.64 4.58
4 21.86 5.21
5 4.72 5.37

SSIM

1 0.52 0.11
2 0.12 0.02
3 0.01 0.23
4 0.58 0.06
5 0.22 0.07

LPIPS

1 0.51 1.01
2 1.06 0.91
3 1.09 1.16
4 0.47 1.13
5 0.99 1.06

NTIRE

PSNR

1 20.87 4.60
2 5.27 4.59
3 4.65 4.57
4 21.25 4.99
5 4.72 5.00

SSIM

1 0.32 0.11
2 0.12 0.01
3 0.03 0.06
4 0.37 0.01
5 0.24 0.01

LPIPS

1 0.67 1.01
2 1.06 0.91
3 1.16 1.28
4 0.63 1.30
5 0.99 1.22

Table 9. We present the performance of the AD-L-CW model for
different values of the hyperparameters c (controls the trade-off
between the L2 norm of the perturbation) and T (number of itera-
tions to minimize s2) on the AIM and NTIRE validation datasets
with respect to reference metrics.
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[9] Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD
Rodrigues. Robust large margin deep neural networks.
IEEE Transactions on Signal Processing, 65(16):4265–
4280, 2017. 2

[10] Dániel Varga, Adrián Csiszárik, and Zsolt Zombori. Gradient
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