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7. Training Details
We train all methods using our data loaders, which gradu-
ally increase the distance between reference views during
training. Specifically, over the first 150,000 training steps,
we linearly increase the distance between reference views
from 25 to 45.

7.1. Our Method

We train our method for 300,000 steps using a batch size of
7, which requires about 80 GB of VRAM on a single GPU.
We use an MSE loss for the first 150,000 iterations and sup-
plement it with an LPIPS loss with weight 0.05 starting at
150,000 steps. For each batch element (scene), we render
4 target views. To allow our method to produce gradients
for multiple estimated depths during each forward pass, we
place 3 Gaussians along each ray and determine their posi-
tions by independently sampling from the ray’s probability
distribution 3 times. We then divide each Gaussian’s alpha
value by 3 such that α = ϕz

3 , which ensures that the Gaus-
sians placed along any particular ray have a total opacity of
roughly 1. For an overview of pixelSplat’s architecture, see
Figure 8.

Depth regularization. To generate the point clouds shown
in the main paper, we fine-tune our model for 50,000 steps
with a depth regularization loss Lreg. depth. To compute this
loss, for each rendered view, we generate a corresponding
depth map D. We use D to compute the loss as follows,
where D[ux,uy] represents indexing:

D∆
x [u] = D[ux−1,uy ]− 2D[ux,uy ] +D[ux+1,uy ]

D∆
y [u] = D[ux,uy−1]− 2D[ux,uy ] +D[ux,uy+1]

I∆x = max(|I[ux−1,uy ]− I[ux,uy ]| , |I[ux+1,uy ]− I[ux,uy ]|)

I∆y = max(|I[ux,uy−1]− I[ux,uy ]| , |I[ux,uy+1]− I[ux,uy ]|)

Lreg. depth[u] = D∆
x [u] exp

(
8 ∗ I∆x [u]

)
+D∆

y [u] exp
(
8 ∗ I∆y [u]

)
(9)

Transformation of Gaussians into world space. Because our model pre-
dicts Gaussian parameters in camera space, these parameters must be trans-
formed into world space before rendering. Given a 4× 4 camera-to-world
extrinsics matrix T containing a 3× 3 rotation R and a 3× 1 translation
t, we transform them as follows:

µworld = Tµcam.

Σworld = RΣcam.R
T

αworld = αcam.

sworld = DRscam.

(10)

Here, DR is a block-diagonal matrix consisting of Wigner D matrices,
which rotates the spherical harmonics coefficients scam.. In practice, we use

Method PSNR ↑ SSIM ↑ LPIPS ↓

Ours 26.09 0.863 0.136
Ours (3 Views) 28.31 0.908 0.100

Table 3. Quantitative comparison of 2 and 3 view Real Estate
10k results. Given a third reference view located halfway between
the two existing reference views, a 3-view variant of pixelSplat
produces slightly better results.

the e3nn library to compute these matrices and recompile the original 3D
Gaussian splatting code base to follow e3nn’s conventions.

7.2. Method of Du et al.
We train the method of Du et al. [10] for 300,000 iterations using a total
batch size of 32 spread across 4 GPUs, which requires around 44 GB of
VRAM per GPU. We train using the authors’ default hyperparameters and
enable the LPIPS loss after 150,000 iterations.

7.3. pixelNeRF
We train pixelNeRF [58] for 500,000 iterations using a batch size of 12,
which requires about 20 GB of VRAM on a single GPU. We use the authors’
default hyperparameters for the NMR dataset, in which the first pooling
layer of pixelNeRF’s ResNet is disabled to increase feature resolution.
Following Du et al. [10], we set the near and far planes to be 0.1 and 10.0
respectively.

7.4. GPNR
We train GPNR [46] for 250,000 iterations using a batch size of 4098 spread
across 6 GPUs, which requires about 67 GB of VRAM per GPU. We use the
authors’ default hyperparameters but reduce the learning rate to 1 ∗ 10−4,
since several attempts at using the default learning rate of 3 ∗ 10−4 yielded
sudden training collapses on our dataset.

8. Using More Reference Views
While our epipolar encoder is primarily designed for novel view synthesis
from pairs of images, it can be extended to an arbitrary number of views.
Specifically, for a given pixel coordinate, epipolar samples can be taken
from any number of images. The union of these samples can subsequently
be used in place of a single epipolar line’s samples. To allow the epipolar
transformer to distinguish between samples taken from different views, we
add a learnable per-image embedding to each sample in this union. Figure 9
and Table 3 show 3-view results.

9. Limitations
Our model has several limitations. First, rather than fusing or de-duplicating
Gaussians observed from both reference views, it simply outputs the union
of the Gaussians predicted from each view. Second, it does not address
generative modeling of unseen parts of the scene. Finally, when extended
to many reference views, our epipolar attention mechanism becomes pro-
hibitively expensive in terms of memory. Addressing these issues would be
an exciting topic for future work.
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Figure 8. Architecture diagram.

10. Additional Results
We present additional results on the following pages.



Ref. Target View Ours Ours (3 Views)

Figure 9. Qualitative comparison of novel views given 2 and 3 reference views. Our method can be extended to use an arbitrary, fixed
number of reference views as input. Here, we compare the results from a 3-view model with those from the original 2-view model. The
2-view model uses the top and bottom reference views as input, while the 3-view model uses all three.



Ref. Target View Ours Du et al. [10] GPNR [46] pixelNeRF [58]

Figure 10. More results on the Real Estate 10k dataset.



Ref. Target View Ours Du et al. [10] GPNR [46] pixelNeRF [58]

Figure 11. More results on the ACID dataset.
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