A. HCC Algorithm

Algorithm 1 describes hierarchical correlation clustering
(HCC) in detail. The algorithm at the beginning assumes n
singleton clusters, one for each object. For each cluster, it
obtains the nearest cluster and the respective similarity. The
algorithm then iteratively performs the following steps. i)
Finds the two nearest clusters according to the inter-cluster
(dis)similarity function defined in Eq. 5. ii) Merges the
respective clusters to build a new cluster at a higher level.
iii) Updates the inter-cluster similarity matrix S, the near-
est neighbor vector nn_ind and the respective similarities

nn_sim.*

Algorithm 1 Hierarchical Correlation Clustering.

Require: A set of n objects O = {0,...,n — 1} and the
pairwise similarities S.
1: foralli € O do
2. nn_ind[i] = arg max; S[i, j]
3 nn.sim[i] = max; S|, j]
4: end for
5: n_c = |O| {shows the number of active clusters}
6: while n_c > 1do
7. {find the indices of the two nearest clusters, w.l.g.
we assume u < v}
8  u = argmax; nn_sim|[i|
9: v = nn_ind[u]
10:  {update the inter-cluster (dis)similarities, active clus-
ters and other parameters }
11:  foralli € {0,...,n_c} do
12: new_siml[i] = S[i, u] + S[i, v]
13:  end for
14:  Remove(new_sim[v])
15 Remove(new_sim|u])
16:  Remove(S[v,:])
17 Remove(S[:, v])
18:  Remove(S[u,:])
19:  Remove(S[:, v))
20:  Append(S, new_sim)
21:  Append(S, [new_sim, 0]T)
222 ncec=nc—1
23:  Remove(nn_ind[v])
24:  Remove(nn_sim[u])
25:  Update (nn_ind)
26:  Update (nn_sim)
27:  Append(nn_ind, arg max; S[n_c, j])
28:  Append(nn_sim, max; S[n_c, j])
29: end while
Return the intermediate clusters and the dendrogram.

“In our implementation, we use a data structure similar to the linkage
matrix used by scipy package in Python to encode the dendrogram and
store the intermediate clusters.

B. Proofs
B.1. Proof of Lemma 1

One can show that the pairwise minimax dissimilarities
across any given graph are identical to the pairwise mini-
max dissimilarities present in any minimum spanning tree
obtained from the same graph. The proof is similar to the
maximum capacity problem [40]. Thereby, the minimax
dissimilarities are obtained by

DMM  — i D
i3 pePiy(g) \1<iSlpl—1  POPED
= D 15
1§zrgn\3§|—1 p(p(+1)> (15)

where p;; indicates the (only) path between i and j on
a minimum spanning tree computed on G. To obtain the
minimax dissimilarities D%j M we can just select the max-
imal edge weight on the only path between ¢ and j on the
minimum spanning tree.

On the other hand, the single linkage method and the
Kruskal’s minimum spanning tree algorithm are equivalent
[35]. Thus, the dendrogram 7' obtained via single linkage
sufficiently contains the pairwise minimax dissimilarities.
Now, we elaborate that the minimax dissimilarities in Eq.
15 equal the dissimilarities defined in Eq. 6, i.e., X;; is
the largest edge weight on the path between 7 and j in the
hierarchy.

Given 1, j, let

st.i,jeT andT' € Tr.
(16)
Then, T™ represents a minimum spanning subtree, which
includes a path between 7 and j (because the root cluster of
T™* contains both 7 and 7) and it is consistent with a com-
plete minimum spanning on all the objects. On the other
hand, we know that for each pair of clusters u,v € T*
which have direct or indirect parent-child relation, we have,
linkage(u) > linkage(v) iff level(u) > level(v). This
implies the linkage of the root cluster of 1™ represents the
maximal edge weight on the path between ¢ and j repre-
sented by the dendrogram T'. Thus, X;; represents D}/

T* = arg min linkage(T")

Thereby, minimax dissimilarities correspond to building
a single linkage dendrogram and using the linkage as the
pairwise dissimilarity between the objects in the two re-
spective clusters. We know that according to Proposition 1
single linkage dendrogram is shift-invariant. Therefore, by
shifting the pairwise dissimilarities by a sufficient «, there
will be no change in the paths between the clusters of sin-
gle linkage dendrogram, nor in the paths representing the
minimax dissimilarities.



B.2. Proof of Theorem 2

Over a graph, we define a path between ¢ and j to be pos-
itive if all the edge weights on the path are positive. Then,
we have the following observations.

1. On a general graph G(O, S), one can see that in the opti-
mal solution of correlation clustering, if the two objects
1 and j are in the same cluster, then there is at least one
positive path between them (the proof can be done by
contradiction; if there is no such a path, then the two ob-
jects should be in separate clusters in order to avoid the
increase in the cost function).

2. Whenever there is a positive path between ¢ and j, then
their minimax similarity SM M will be necessarily pos-
itive. Therefore, when we apply correlation clustering
to graph G(O, SMM)_ all the intra-cluster similarities of
the optimal clusters will be positive. This corresponds
to having a positive path between every two objects that
are in the same optimal cluster, i.e., they are in the same
connected component of G(O, S’) where S’ is defined as

L,

3. We can also conclude that when we apply correlation
clustering to graph G(O,S™M), then for any optimal
cluster c, there is no object 7 ¢ c such that ¢ has a posi-
tive path to an object in c. Otherwise, ¢ and all the other
objects outside ¢ with positive paths to ¢ would have pos-
itive paths to all the objects in ¢ such that all of them
should be clustered together.

if Sij > 0.

) (17)
otherwise.

Now we study the connection of connected components
of graph G(O,S’) to the optimal correlation clustering on
g(o7 SM M )

» There is a positive path between every two objects in a
connected component of G(O, S’). Thus, they are in the
same optimal cluster of G(O, SMM),

* If two nodes ¢ and j are at two different connected com-
ponents, then there is no positive path between them ei-
ther on G(O,S’) or on G(O,SMM), Thus, they cannot
be in the same cluster if we apply correlation clustering
on G(O,SMM),

Thus, we conclude that the connected components of
G(0,S’) correspond to the optimal correlation clustering
on graph G(O, SMM),

B.3. Proof of Theorem 3

The approximate algorithm in [5] iteratively picks an un-
clustered object and its positive neighbors as a new cluster.
According to Theorem 1, the optimal solution of correlation
clustering applied to G(O, SMM) corresponds to extracting
the connected components of graph G(O, S’), where S’ is
defined in Eq. 17.

Thus it is sufficient to show the two followings.

1. If the algorithm in [5] on G(O, SMM) picks i and j in
the same cluster then S} = +1. This indicates that
i and j have a positive path on G(O, S) (a positive path
is defined in Theorem 1), i.e., ¢ and j are in the same
connected component of G(O, S').

2. If ¢ and j are in different clusters according to algo-
rithm [5] applied to G(O, SMM), then S%M = —1.
This indicates that there is no positive path between %
and j on G(O,S) and also on G(O,SMM) ie., i and
j are in different connected component of G(O, S’).

C. Additional Experimental Results
C.1. More results with UCI datasets

In Figure 5, we demonstrate the performance of HCC on
different UCI datasets w.r.t. Rand score, and compare the
results with other agglomerative methods (the results w.r.t.
MI are shown in the main text in Figure 2). We observe that
consistent with the MI measure, HCC yields the best scores,
even at high noise levels and when the datasets are difficult
to cluster.

C.2. HCC on 20 newsgroup data

In the following, we study the performance of different
methods on several subsets of 20 newsgroup data collection
chosen randomly from different categories.

1. newsl: the 3901 documents of the cat-
egories "misc.forsale’, ‘rec.motorcycles’,
“talk.politics.mideast’, ’sci.med’ (48596 dimensions).

2. news2: the 3743 documents of the cate-
gories  ’alt.atheism’, ’comp.sys.mac.hardware’,
’sci.electronics’, ’soc.religion.christian’ (40735
dimensions).

3. news3:
’sci.space’,
sions).

the 1984 documents of the categories
’soc.religion.christian” (30749 dimen-

4. news4: the 2877 documents of the -cate-
gories ’comp.graphics’, ‘rec.sport.baseball’,
“talk.politics.guns’ (38177 dimensions).
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Figure 5. Rand score of hierarchical clustering methods applied to the UCI datasets (the x-axis shows the flip noise parameter 7). Similar
to the MI measure, HCC provides the best scores, even when the datasets are difficult to cluster.

Table 3. Performance of different hierarchical clustering methods on 20 newsgroup datasets. HCC yields the best results according to the

different evaluation measures.

news1 news2 news3 news4
method MI Rand MI Rand MI Rand MI Rand
SL 0.034 0.017 || 0.043 0.039 || 0.021 0.044 || 0.020 0.038
CL 0.266 0.277 || 0.255 0.230 || 0.501 0.594 || 0.121 0.116
AL 0.287 0.228 || 0.342 0.344 || 0.685 0.750 || 0.498 0.548
HCC 0.331 0.287 || 0.370 0.368 || 0.794 0.854 || 0.541 0.499

Table 4. Performance of tree-preserving embedding methods on different 20 newsgroup datasets applied with GMM. The embeddings
obtained by HCC yield better results.

newsl news2 news3 news4
method MI Rand MI Rand MI Rand MI Rand
SL 0.034 0.017 || 0.043 0.039 || 0.021 0.044 || 0.020 0.038
SL+GMM 0.191 0.158 || 0.108 0.097 || 0.166 0.210 || 0.134 0.120
CL 0.266 0.277 || 0.255 0.230 || 0.501 0.594 || 0.121 0.116
CL+GMM 0271 0.275 || 0.272 0.239 || 0.522 0.587 || 0.118 0.119
AL 0.287 0.228 || 0.342 0.344 || 0.685 0.750 || 0.498 0.548
AL+GMM 0.309 0.279 || 0.358 0.350 || 0.701 0.773 || 0.503 0.525
HCC 0.331 0.287 || 0.370 0.368 || 0.794 0.854 || 0.541 0.499
HCC+GMM || 0.344 0.297 || 0.439 0.443 || 0.831 0.892 || 0.560 0.519

For each dataset, we compute the TF-IDF vectors of the
documents and apply PCA with 50 principal components.
We obtain the similarity between every two documents via
the cosine similarity between their respective PCA vectors.
As has been discussed in detail in [37], adding a fixed num-
ber to all the pairwise similarities can possibly improve the

dataset.

clustering results.” Table 3 shows the results for various
hierarchical clustering methods w.r.t. different evaluation
criteria. Among the different methods, HCC usually yields

51t is suggested in [18] to adaptively shift the pairwise similarities so
that the sum of pairwise similarities equals zero for each object in the



Table 5. Performance of different methods on webpage dataset.
The embeddings obtained by HCC yield better results.

method MI Rand
SL 0.218 0.192
SL+GMM 0.254 0.211
CL 0.386 0417
CL+GMM 0.392 0.405
AL 0.459 0.488
AL+GMM 0.472 0.491
HCC 0.583 0.575
HCC+GMM || 0.622 0.630

the best results, and AL is the second best choice.

In the following, we investigate tree-preserving embed-
ding on these datasets. Table 4 presents the results of tree-
preserving embedding compared to hierarchical clustering.
Specifically, we investigate the benefits of using hierarchi-
cal clustering for feature extraction. We observe, i) employ-
ing hierarchical clustering to extract features for a method
such as GMM usually yields improving the results, and ii)
HCC, whether used directly for clustering or for feature ex-
traction, often gives superior results compared to the alter-
natives.

C.3. Experiments with web data

Finally, we investigate HCC for both hierarchical clus-
tering and feature extraction on a web dataset. The dataset
consists of 15, 000 webpages collected about topics such as
politics, finance, sport, art, entertainment, health, technol-
ogy, environment, cars and films. Similar to 20 newsgroup
datasets, we compute the TF-IDF vectors, apply PCA and
then obtain the pairwise cosine similarities between the web
pages. Table 5 demonstrates the performance of different
methods on this dataset. We observe that, consistent with
the previous experiments, both HCC and HCC+GMM yield
improving the results compared to the baselines. In addi-
tion, using HCC to compute intermediate features for GMM
(i.e., HCC+GMM) results in better scores than using HCC
to produce the final clusters.
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