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1. Related Work

Advancements in Generative Synthesis for Image An-
imation The recent advancements in generative models
have paved the way for the photorealistic synthesis of im-
ages from textual prompts [9, 10, 17, 38–40]. By extending
the generated image tensors over time, these models can be
adapted to synthesize video sequences [6, 8, 25, 32, 45, 59,
64]. Despite their capability to create plausible video se-
quences that encapsulate the spatiotemporal characteristics
of real footage, these sequences often exhibit artifacts such
as incoherent motion, and unrealistic temporal texture vari-
ations, and sometimes violate physical constraints like mass
preservation. Instead of generating videos purely from text,
certain techniques animate a static image. A plethora of
contemporary deep learning methods utilize a 3D-Unet ar-
chitecture to generate video volumes directly from an input
image [18, 22, 24, 28, 31, 49]. As these models are essen-
tially the same video generation models (but conditioned
on image information instead of text), they exhibit similar
artifacts as mentioned earlier. A potential solution to these
limitations is to animate an input source image through ex-
plicit or implicit image-based rendering, i.e., manipulating
the image content according to motion derived from exter-
nal sources such as a driving video [30, 42–44, 54], motion
or 3D geometry priors [7, 20, 27, 33–35, 47, 52, 55–57, 62],
user annotations [5, 13, 15, 21, 23, 53, 58, 61], or a physi-
cal simulation. Although these methods exhibit enhanced
temporal coherence and realism, they necessitate additional
guidance signals or user input or otherwise depend on lim-
ited motion representations (e.g., optical flow fields, as op-
posed to full-video dense motion trajectories).

Exploration of Motion Models and Motion Priors Sev-
eral studies have employed representations of motion be-
yond two-frame flow fields, in both Eulerian and La-
grangian domains. For instance, Fourier or phase-based
motion representations (like ours) have been utilized for
motion magnification and visualization [41], or video edit-

ing applications [16]. These representations can also be
employed in motion prediction, where an image or video
informs a deterministic future motion estimate, or a more
comprehensive distribution of potential motions. Our work
can be viewed as learning priors for motion induced by
underlying scene dynamics, where our prior is an image-
conditioned distribution over long-range dense trajecto-
ries [50, 51]. Recent studies have highlighted the benefits
of modeling and predicting motion using generative mod-
els in several closed-domain settings such as humans and
animals [2, 14, 19, 36, 48, 60].

Significance of Large-Scale Models Large-scale models
have made significant strides in various visual tasks in re-
cent years [63]. For instance, OpenAI’s DALL-E [4] and
CLIP [37] models have demonstrated excellence in image
generation and text-to-image translation tasks [37]. Simi-
larly, Google’s BigGAN [11] and StyleGAN [1] have made
substantial breakthroughs in image generation. By training
on copious amounts of data, these large-scale models can
learn intricate visual features and complex generation pat-
terns. However, despite their significant accomplishments
in static image generation, numerous areas remain unex-
plored in dynamic visual content, particularly in motion
model generation. In this context, our work represents the
first attempt to design a large-scale visual motion model.
Our model can generate high-quality video sequences and
capture complex motion patterns and temporal dependen-
cies, thus excelling in tasks such as video generation and
image animation.

2. Implementation and Pretraining Details

2.1. Network Structure

Neural Image Renderer R We adopt the architec-
ture outlined in [29] to implement R, primarily due to
its simplistic design. In this scenario, R deploys two
down-sampling blocks to construct a feature pyramid,
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(a) Samples generated through training on the SHM dataset.

(b) Samples generated through training on the FMM dataset.

Figure 1. More examples. We strongly recommend watching the videos on the homepage.
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driving image Îk utilizing six residual blocks and two up-
sampling blocks.

Optical Flow Predictor P The optical flow predictor P is
implemented using MRAA [44]. This approach is proficient

in estimating optical flow δx, δy , and the motion intention
weight ω, based on the identified object parts. To augment
the performance, we also integrate the equivariance loss,
following the methodology in [35].



Motion Encoder E and Decoder D We incorporate a
Variational Auto-Encoder (VAE) with a continuous latent
space of dimension 4, as initially introduced by Rombach et
al. [39]. To enhance the model’s performance, we integrate
a multi-scale gradient consistency loss and a KL-divergence
regularization with a weight of 10−6 [35].

Motion Diffusion Model For the denoising model ϵθ
within the motion diffusion framework, we employ the
conditional 3D U-Net architecture as proposed by Ho et
al. [26], which comprises four down-sampling and four up-
sampling 3D convolutional blocks. We encode I0 and any
optional text using ImageBind, subsequently utilizing them
as two distinct tokens in the cross-attention module. Image-
Bind generates a vector of 1024 dimensions for both image
and text. The latent motion vector z0 of image I0 is trans-
formed to {v1, · · · , vK} and is also supplied to ϵθ through
concatenation with xt.

2.2. Dataset

During the pre-training phase, we selectively utilized the
following three datasets.

• CelebV-HQ: The CelebV-HQ dataset is a comprehen-
sive video facial attributes dataset on a large scale.
It encompasses 35,666 video clips featuring 15,653
identities and 83 manually annotated facial attributes.
These attributes span appearance, action, and emotion,
offering a diverse and extensive dataset for facial anal-
ysis.

• WebVid-10M: The WebVid-10M is a large-scale
dataset comprising short videos with textual descrip-
tions obtained from stock footage websites. It includes
10.7M video-caption pairs, amounting to 52K hours of
video content.

• HD-VILA-100M: The HD-VILA-100M is a large-
scale, high-resolution, and diverse video-language
dataset, specifically designed to aid multimodal repre-
sentation learning. The dataset incorporates examples
of video clips and transcriptions generated by Auto-
matic Speech Recognition (ASR).

2.3. Pre-training Stage

Primary Training The initial training phase of the Mo-
tion Accretion Model was conducted using the WebVid10M
dataset, necessitating 224 A100-GPU Days. Due to the
presence of watermarks in the WebVid10M dataset, a ran-
dom selection of approximately 1M videos from the HD-
VILA-100M dataset was employed for fine-tuning, re-
quiring an additional 32 A100-GPU Days. This process
yielded our first general motion accretion model, denoted

as Mgeneral. This model exhibits proficiency in predict-
ing motion details across various scenarios and generating
high-resolution images.

Augmenting Human Portrait Reconstruction To en-
hance the model’s capacity for human portrait reconstruc-
tion, specifically the intricate facial movements, we contin-
ued to train Mgeneral using the CelebV-HQ dataset, requir-
ing 64 A100-GPU Days. The resulting model, denoted as
Mfacial, was trained with images randomly selected from
video data, with a frame interval not exceeding 150 as I0
and Ik. Depending on the specific downstream task, we
can selectively utilize different Motion Accretion Models
for transfer learning.

Preprocessing for the Motion Diffusion Model Prior to
the training of the Motion Diffusion Model, we prepro-
cessed the data using the Motion Accretion Model trained in
the initial phase to generate the sequence {z0, z1, · · · , zK}.
This sequence was then supplied as a batch of data to the
Motion Diffusion Model. To minimize redundant computa-
tions, all video data were converted into latent motion vec-
tors and stored in the TFRecorder format for subsequent
retrieval. It is worth noting that the efficacy of the prior
knowledge acquired by the Motion Diffusion Model is con-
tingent on the quality of the provided z0, z1, · · · , zK . To
mitigate potential errors in estimating scene optical flow and
significant reconstruction errors by the Neural Image Ren-
derer during drastic scene changes, we implemented mea-
sures to reduce these errors during the pre-training stage.

Data Generation For each video, we selected a continu-
ous segment of approximately 8 frames, i.e., K = 8, and
evaluated the reconstruction error of I0 and the final frame
IK . If the reconstruction error ∥ ÎK − IK ∥22 exceeded 50,
the current video sequence was discarded. We selected one
frame as I0 every 4 frames. For the CelebV-HD dataset, we
generated approximately 300GB of training data using this
method. Given the extensive volume of the WebVid10M
dataset, we limited each video to randomly extract 5 video
sub-segments for constructing training data, eventually gen-
erating over 1TB of training data.

Training the Denoise Model Following this, we trained
the denoise model ϵθ on these two datasets separately, re-
sulting in ϵθgeneral

and ϵθfacial
. Both models underwent ap-

proximately 64 A100-GPU Days of training. During the
training process, all frames were scaled and cropped to a
resolution of 512×512. That is, p ∈ R128×128, z ∈ R16×16.
More training configurations are listed in Tab. 1.



Configs Values
T 1000
K 8

Betas of AdamW (0.9,0.999)
Weight decay 0.0
Learning rate 1e-4

Batch size 160
Number of GPUs 32

Image/Text Encoder ImageBind

Table 1. Hyper-parameters and values in motion diffusion model.

3. Applications

The Large Visual Motion Model (LVMM) is a robust
technology that generates dynamic effects from a single
static image, enhancing the visual experience across various
scenarios. Its primary applications span stochastic genera-
tion, conditional animation, and seamless looping.

Stochastic Generation The Stochastic Generation tech-
nique facilitates the synthesis of realistic local micro-
motions from an initial image, denoted as I0, leveraging
solely its inherent visual features. This capability empow-
ers the Local Visual Motion Model (LVMM) to fabricate
dynamic effects that are not merely convincing but also har-
monize with the image’s visual attributes, thereby enhanc-
ing the verisimilitude of the generated motions. This tech-
nological innovation is particularly effective in sectors such
as entertainment for the production of realistic special ef-
fects, virtual reality for the construction of lifelike environ-
ments, and digital marketing for the creation of dynamic
advertisements.

Our system animates a single static image I0 by ini-
tially predicting a sequence of neural motion vectors
{z0, · · · , zK}, followed by the generation of an animation
using our image-based rendering module R applied to the
motion displacement fields obtained via D(zk). The explicit
modeling of scene motions in our system facilitates the pro-
duction of slow-motion videos through linear interpolation
of the motion displacement fields.

Conditional Animation The Local Visual Motion Model
(LVMM), when supplied with an initial image I0 and aux-
iliary modal conditions, possesses the ability to modify the
image to conform to the stipulated conditions. This feature
facilitates the creation of customized animations capable of
conveying a specific narrative or complying with a prede-
fined set of instructions, thereby delivering a tailored visual
experience. This technological advancement proves partic-
ularly effective in domains such as education, where it can
be used to create interactive learning resources, storytelling

or film-making for the generation of narrative-centric ani-
mations, and user interface design for the development of
dynamic, interactive components.

Seamless Looping Seamless looping involves generating
video clips from an initial image I0 that can loop contin-
uously without perceptible discontinuities. This function-
ality is particularly beneficial in creating visually engaging
content that can loop seamlessly, offering a continuous and
immersive visual experience. This technology finds effec-
tive use in digital signage for looping advertisements, in so-
cial media for engaging, seamless looping content, and in
art and design for captivating, endless visual effects. It is
sometimes useful to generate videos with motion that loops
seamlessly, meaning that there is no appearance or motion
discontinuity between the start and end of the video.

Unfortunately, it is hard to find a large collection of
seamlessly looping videos for training diffusion models.
Instead, we devise a method to use our motion diffusion
model, trained on regular non-looping video clips, to pro-
duce seamless looping video. Inspired by recent work on
guidance for image editing, our method is a motion self-
guidance technique that guides the motion denoising sam-
pling processing using explicit looping constraints. In par-
ticular, at each iterative denoising step during the inference
stage, we incorporate an additional motion guidance signal
alongside standard classifier-free guidance, where we en-
force each pixel’s position and velocity at the start and end
frames to be as similar as possible:

ϵ̂t = (1 + w)ϵθ(xt, t, y)− wϵθ(xt, t, ∅) + µσt∇xt
Lt

Lt = ||zK,t − z1,t||1 + ||∇zK,t −∇z1,t||1

where zk,t is the predicted 2D motion displacement field at
time k and denosing step t. w is the classifier-free guidance
weight, and µ is the motion self-guidance weight.

Qualitative Results We demonstrate more qualitative re-
sults in Fig. 1.

4. Dataset used in comparison experiments
Our comprehensive experiments are conducted on an ar-

ray of publicly available video datasets, as detailed below:

• MUG Facial Expression Dataset [3]: This dataset
comprises 1,009 videos featuring 52 subjects, each
exhibiting one of seven distinct expressions, namely,
anger, disgust, fear, happiness, neutral, sadness, and
surprise. We randomly allocate 26 subjects to the
training set, resulting in 465 videos, while the remain-
ing 26 subjects, comprising 544 videos, are assigned
to the testing set.



• MHAD Human Action Dataset [12]: This dataset
contains 861 videos of 27 actions performed by 8 sub-
jects. The actions encompass a wide range of human
movements, including sports actions (e.g., bowling),
hand gestures (e.g., draw x), daily activities (e.g., stand
to sit), and training exercises (e.g., lunge). We ran-
domly assign 4 subjects to the training set (431 videos)
and the remaining 4 subjects to the testing set (430
videos).

• NATOPS Aircraft Handling Signal Dataset [46]:
This dataset includes 9,600 videos of 20 subjects per-
forming 24 body-and-hand gestures used for commu-
nicating with U.S. Navy pilots. The gestures include
common handling signals such as spread wings and
stop. We randomly assign 10 subjects to the training
set (4,800 videos) and the remaining 10 subjects to the
testing set (4,800 videos).

Data Preprocessing All videos are resized to a resolution
of 128 × 128 for compatibility with our models. For the
MHAD and NATOPS datasets, we further preprocess the
videos by cropping out portions of the background using the
provided depth maps. Given that the majority of videos in
these datasets are relatively short (averaging no more than
80 frames), we opt for random sampling of 40 frames per
training video, rather than uniform sampling. These frames
are then sorted chronologically to generate a diverse array
of fixed-length video clips for training the stage-two DM.

5. More discussion

Owing to the unified multimodal feature encoding pro-
vided by ImageBind, potential applications of LVMM en-
compass image dynamization guided by text or/and audio.
Despite the Motion Accretion Model’s proficiency in accu-
rately parsing intricate local micro-dynamics within scenes
and synthesizing corresponding video clips, it encounters
difficulties in managing large-scale movements. This is par-
ticularly evident when the synthesized videos require the
generation of substantial content not present in the input
frame. Although a generalized Motion Diffusion Model has
been trained, it is yet incapable of directly producing high-
quality motion trajectories encompassing arbitrary motion
forms in a zero-shot manner. To achieve satisfactory results,
fine-tuning the motion diffusion model on relevant datasets
remains a necessary step.
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