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Overview

In this document, we first visualize the rain effect at different scales in Section 1. Then, we present the dataset description,
network architecture of UNet, and loss function in Sections 2-4. In Section 5, we conduct the comparison between INR and
other low-pass filters. Finally, we show more visual comparisons on both synthetic and real-world images in Section 6.

1. Visualization of Rain Effect at Different Image Scales

We visualize the rain effect at different image scales in Figure 1. We observe that the rain effect decreases significantly at
coarser image scales, which also naturally enables the emergence of underlying clean representations in some coarser scale
of the rainy image. This motivates us to explore the multi-scale representation to facilitate the rain removal. Considering that
the rain effect varies at different image scales, we propose multiple unequal Transformer branches to handle spatially-varying
rain streaks by incorporating the networks at finer scales with deeper architectures.

2. Dataset Description

To evaluate the effectiveness of our method in complex rain scenes, we adopt multiple benchmark datasets. Rain200L and
Rain200H [14] datasets contain 1,800 synthetic rainy images for training and 200 ones for testing. DID-Data [18] and DDN-
Data [7] consist of 12,000 and 12,600 synthetic images with different rain directions and density levels. There are 1,200 and
1,400 rainy images for testing. SPA-Data [11] is the paired real-world dataset which utilizes the human-supervised percentile
video filtering to obtain the ground turths. It contains 638,492 rainy/clear image patches for training and 1,000 testing ones.
GT-RAIN [1] is the recent large-scale dataset with real paired data captured diverse rain effects. It contains 31,524 rainy
and clear frame pairings, which are divided into 26,124 training frames, 3,300 validation frames, and 2,100 test frames. The
scenes also include varying degrees of illumination from different times of day and rain of varying densities, streak lengths,
shapes, and sizes. RE-RAIN [5] contains 300 real rainy images without ground truths which are elaborately selected from
the Internet and related works [9]. The detailed descriptions of the used training and testing datasets are tabulated in Table 1.

Table 1. Descriptions of different image deraining benchmark datasets.

Dataset Rain200L [14] Rain200H [14] DID-Data[18] DDN-Data[7] SPA-Data[l1] GT-RAIN[I] RE-RAIN [5]

Train Samples 1,800 1,800 12,000 12,600 638,492 26,124 0
Test Samples 200 200 1,200 1,400 1,000 2,100 300
Syn/Real Syn Syn Syn Syn Real Real Real

3. Network Architecture of UNet

Each UNet comprises a sequence of Transformer blocks [16] that calculate self-attention across channels, rather than the
spatial dimension, in order to reduce time and memory complexity. The number of Transformer blocks { N1, No, N3} are set
to {2, 3, 3}. The expansion ratio of the number of feature channels is set to 2. We also add skip-connections to bridge across
continuous intermediate features for stable training. We show the network architecture of UNet in Figure 2.

*Corresponding author.
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Figure 1. A rainy/rain-free image and its coarser versions at 1/2 and 1/4 image scales. Note that the rain effect decreases significantly at

coarser image scales.
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Figure 2. Network architecture of UNet.

In the main manuscript, we introduce the INR-related loss. In this document, we introduce three additional loss functions.
We utilize Charbonnier [17], frequency and edge [6] loss to constrain the network training. The Charbonnier loss is defined

as follows:

3
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where B, and T denote the s-th scale reconstructed image and ground-truth image, respectively. Here, the penalty coeffi-
cient ¢ is set to 1073, The frequency loss is defined as follows:

3
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where F7 represents the Fourier transform operator to obtain the frequency domain of the original image. The edge loss is
defined as follows:

3
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where A represents the Laplacian operator.

5. Comparison with Low-pass Filters

As mentioned in the main manuscript, recent studies point out the low-pass filtering characteristics in the implicit neural
representation (INR). We attribute the deraining ability of INR to a basic fact that the intensity values of rain-affected pixels
tend to surpass those of their neighboring non-rain pixels. Similar to [2], we replace INR with some classical low-pass filters
including uniform and median filters. We visualize some comparison results in Figure 3. Obviously, other methods are not
able to effectively remove rain streaks in complex scenes and are prone to losing high-frequency image details. Thanks to the
combined effect of implicit interpolation and spatial encoding operations, our proposed INR branch generates clearer results
with better detail and texture recovery.

Figure 3. Visual comparisons with other low-pass filters.

6. More Experimental Results

In this section, we show more experimental results to demonstrate the effectiveness of our method. Firstly, we evaluate our
approach on recent GT-RAIN dataset [1]. Note that we retrain the learning-based methods that are not trained on this dataset
using the same protocols for fairness. Table 2 shows that our method performs well on the challenging GT-RAIN dataset.

Table 2. Quantitative evaluations of the proposed approach against state-of-the-art image deraining methods on the GT-RAIN dataset.

Methods ‘ RCDNet [10] SPDNet [15] Uformer [12] Restormer [16] IDT [13] DRSformer [4] NeRD-Rain
GTRAIN [1] PSNR 22.61 22.98 22.74 23.38 22.51 22.56 23.50
SSIM 0.6363 0.6387 0.6389 0.6401 0.6502 0.6290 0.6459

We further compare with more recent Transformer-based image deraining approach, UDR-S2Former [3]. Table 3 reports
quantitative results trained on the Rain200L benchmark [14]. Our method still achieves the highest PSNR and SSIM values.



Table 3. Quantitative evaluations of the proposed approach against state-of-the-art image deraining methods on the Rain200L dataset.

Methods ‘ SPDNet [15] Uformer [12] Restormer [16] IDT [13] DRSformer [4] UDR-S2Former [3] NeRD-Rain
Rain200L [14] PSNR 40.50 40.20 40.99 40.74 41.23 40.96 41.71
am SSIM 0.987 0.986 0.989 0.988 0.989 0.989 0.990

(c) SPDNet [15]

(g) NeRD-Rain-S (Ours-S) (h) NeRD-Rain (Ours) (i) Ground truth

Figure 4. Visual comparison results on the Rain200L dataset [14]. The results shown in (b)-(f) still contain significant white rain streaks.
In contrast, our models generate much clearer images.

Finally, Figures 4-5 show the visual comparison results on the synthetic datasets (i.e., Rain200L [14] and Rain200H [14]).
Compared to other methods, our NeRD-Rain can generate high-quality deraining results with more accurate detail and texture
recovery. Figures 6-9 also present the visual comparison results on the real-world datasets (e.g., SPA-Data [11] and RE-
RAIN [5]). Our method can successfully remove complex and random rain streaks and own visual pleasant recovery results.



(a) Rainy input (b) RCDNet [10] (c) DualGCN [8]

(g) DRSformer [4] (h) NeRD-Rain (Ours) (i) Ground truth

Figure 5. Visual comparison results on the Rain200H dataset [14]. The evaluated approaches do not generate clear images, where some
structural details are not restored well. In contrast, our method generates a better-derained image with finer structural details.



(a) Rainy input (b) RCDNet [10] . (c) DualGCN [8]

(d) SPDNet [15] (e) Restormer [16] (f) DRSformer [4]

(g) NeRD-Rain-S (Ours-S) (h) NeRD-Rain (Ours) (i) Ground truth

Figure 6. Visual comparison results on the SPA-Data dataset [11]. The results shown in (b)-(f) still contain significant rain streaks. In
contrast, our models generate much clearer images.
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Figure 7. Visual comparison results on the SPA-Data dataset [11]. The results shown in (b)-(f) still contain significant rain streaks. In

contrast, our models generate much clearer images.



(a) Rainy input (b) Restormer [16]

(c) IDT [13] (d) DRSformer [4]

(e) NeRD-Rain,, ;, INR (f) NeRD-Rain (Ours)

Figure 8. Visual comparison results on the RE-RAIN dataset [5]. The results shown in (b)-(d) still contain significant rain streaks. The
approach (e) without INR is sensitive to complex rain streaks. In contrast, our method generates a much clearer image.
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Figure 9. Visual comparison results on the RE-RAIN dataset [5]. The results shown in (b)-(g) still contain significant rain streaks. The
approach (h) without INR is sensitive to complex rain streaks. In contrast, our method generates a much clearer image.
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