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A. Implementation Details012

Pre-training Pipeline. Overall, we have two phases, the013
pre-training phase and the fine-tuning phase. To provide014
clear pre-training phase of CSC, we summarize our frame-015
work in pseudo-code style as shown Algorithm 1. Then,016
we will introduce the implementation details of fine-tuning017
phase on three downstream perception tasks below.018

A.1. Semantic Segmentation and Object Detection019

As done in previous works [2, 5], we choose MinkUNet as020
the 3D backbone and fine-tune the pre-trained MinkUNet to021
perform semantic segmentation task. For object detection,022
we use VoxelNet as the 3D backbone. The fine-tuning pro-023
cess on the two downstream tasks, semantic segmentation024
and object detection, is out of the scope of our contribution.025
Therefore, we recommend that readers refer to the paper026
and code in SLidR[5] for details of the implementation.027

A.2. Panoptic Segmentation by Cylinder3D028

To the best of our knowledge, we are the first to report029
the results of fine-tuning the pre-trained 3D backbone on030
panoptic segmentation, where the backbone is obtained031
from the multi-modality pre-training. Considering that the032
off-the-shelf pipeline of pre-training and fine-tuning is not033
available, we draw lessons from the uni-modality point034
cloud pre-training work [3] and the study of panoptic seg-035
mentation method [8, 10], and finally choose the Panoptic-036
PolarNet [10] with Cylinder3D [11] as our panoptic seg-037
mentation network. Specifically, our panoptic segmentation038
network includes a 3D encoding network implemented by039
Cylinder3D, a 2D network implemented by UNet, and two040
heads for the prediction of semantic and instance. In the im-041
plementation, we use the LCPS [8] codebase, then remove042
the image branch to evaluate the 3D pre-training methods.043

Algorithm 1 Multi-Modality 3D Pre-Training Pipeline for
our Coherent Semantic Cues Framework (CSC)

1: Input: (i) the point cloud frame P and (ii) the surrounding
images I .

2: Backbones: (1) the 2D embedding network ΘI , (2) the 3D
embedding network ΘP , and (3) the 2D mask network ΘF .

3: Loss: superpixel-superpoint constrastive loss Lsp and
prototype-based loss Lpro.

4: Hyper-parameters: (a) the starting epoch of using prototype-
based loss λ, (b) the temperature of superpixel-superpoint loss
τsp, and (c) the temperature of prototype-based loss τpro.

5: Pipeline:
6: Obtain superpixels S2D and semantic cues Csem from I by

ΘF .
7: for n in 1:MaxEpochs do
8: if n mod λ == 0 then
9: for i in 1:iterations do

10: Extract 2D/3D features from I/P by ΘI /ΘP .
11: According to 2D/3D features, S2D, and Csem, to pro-

duce the superpixels & superpoints features F2D &
F3D.

12: Maintain two separate prototype features P2D & P3D

by F2D, F3D, and Csem.

13: P2D
Linear Layers−−−−−−→ P̄2D,

14: P3D
Linear Layers−−−−−−→ P̄3D.

15: {P̄2D, P̄3D}
Linear Layers−−−−−−→ Pmix.

16: end for
17: end if
18: for i in 1:iterations do
19: Extract 2D/3D features from I/P by ΘI /ΘP .
20: According to 2D/3D features, S2D, and Csem, to generate

the superpixels & superpoints features F2D & F3D.

21: Lsp = −
∑Q

i=0 log
exp(⟨F i

3D,F i
2D⟩/τsp)∑Q

j=0 exp(⟨F i
3D,F

j
2D⟩/τsp)

22: if n < λ then
23: Ltotal = Lsp.
24: else
25: Lpro = − log

exp(⟨F 3D,P+
mix⟩/τpro)∑|Csem|

i=0 exp(⟨F 3D,P i
mix⟩/τpro)

.

26: Ltotal = Lsp +Lpro.
27: end if
28: Update ΘP by Ltotal.
29: end for
30: end for

B. Complementary Results 044

B.1. Semantic segmentation result of 1% labels 045

To further detailed analysis in annotation-efficient semantic 046
segmentation, we show the average per-class performance 047
in Tab. 1. We observe that 3D representations learned 048
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Random Init. 0.0 0.0 8.1 65.0 0.1 6.6 21.0 9.0 9.3 25.8 89.5 14.8 41.7 48.7 72.4 73.3 30.3
Point Con. [6] 0.0 1.0 5.6 67.4 0.0 3.3 31.6 5.6 12.1 30.8 91.7 21.9 48.4 50.8 75.0 74.6 32.5
Depth Con. [7] 0.0 0.6 6.5 64.7 0.2 5.1 29.0 9.5 12.1 29.9 90.3 17.8 44.4 49.5 73.5 74.0 31.7
SLidR [5] 0.0 3.1 15.2 72.0 0.9 18.8 43.2 12.5 14.7 33.3 92.8 29.4 54.0 61.0 80.2 81.9 38.3
ST-SLidR [2] 0.0 2.7 16.0 74.5 3.2 25.4 50.9 20.0 17.7 40.2 92.0 30.7 54.2 61.1 80.5 82.9 40.7
TriCC [4] 0.0 2.6 20.7 73.6 0.3 18.9 49.2 22.0 16.9 33.4 94.5 43.1 57.2 62.1 82.3 82.6 41.2
Seal [1] 0.0 9.4 32.6 77.5 10.4 28.0 53.0 25.0 30.9 49.7 94.0 33.7 60.1 59.6 83.9 83.4 45.8
Ours 0.0 0.0 58.7 74.0 0.1 40.9 58.9 31.8 23.7 45.1 92.5 33.0 56.4 62.4 81.6 84.2 47.0

Table 1. Per-class IoU on nuScenes when fine-tunning with 1% labels

by CSC significantly improve performance in the partial049
classes, such as bus, motorcycle, pedestrian, and traffic050
cone. Specifically, we observe a remarkable increase of ↑051
26.1% IoU for the bus class, ↑ 12.9% IoU for the motorcycle052
class, and ↑ 5.9% IoU for the pedestrian class, all of which053
are encompassed in the prototype semantics of the VFM054
(see Fig. 2). However, we observe a decrease in the IoUs055
for the construction vehicle, trailer, and truck categories,056
which we attribute to the fact that DINOV2 fine-tuned on057
the ADE20K dataset [9] misclassifies these three classes as058
the truck class. More specifically, This is because the cat-059
egories in ADE20K and nuScenes do not match, while we060
emply DINOv2 fine-tuned on ADE20K during pre-training061
phase, which is misaligned with the 3D semantic label dur-062
ing fine-tuning phase. As shown in Fig. 1, we assign se-063
mantic labels to pixels via 3D semantic labels and 2D-3D064
relations, and find those pixels categorized as trucks by DI-065
NOv2 (c), which could be construction vehicle, trailer, or066
truck in nuScenes (b).067

Nevertheless, our CSC framework still outperforms ex-068
isting pre-training methods and outperforms the current069
SOTA method Seal by up to 1.2 mIoU. The above exper-070
imental results demonstrate that, compared to the existing071
3D pre-training methods, our proposed CSC more effec-072
tively transfers 2D knowledge into the 3D network, thereby073
dramatically reducing the dependency on expensive 3D an-074
notations.075

(a) Image (b) 3D semantic label (c)  DINOv2 semantic mask

Figure 1. (a) an input image from nuScenes; (b) const. veh. ,
trailer and truck in DINOv2; (c) truck in nuScenes.

B.2. More Image-LIDAR Datasets. 076

As shown in Tab. 2, we conduct more semantic segmenta- 077
tion experiments on ScribbleKITTI and SemanticSTF, and 078
observe that our CSC outperform SOTA methods on these 079
dataset. 080

Method KITTI ScribbleKITTI (New) SemanticSTF (New)
1% (mIoU ) 1% (mIoU ) 10% (mIoU ) 50% (mIoU )

Random Init. 39.5 23.8 47.6 48.0
PPKT 44.0 36.5 51.7 50.9
SLidR 44.6 39.6 50.5 52.0
Seal 46.6 40.6 52.8 53.5
Ours (CSC) 47.2 (+0.6) 41.6 (+1.0) 53.2 (+0.4) 53.8 (+0.3)

Table 2. CSC vs. previous methods on more datasets.

B.3. More Ablation Study 081

In this section, we present experimental results on the im- 082
pact of hyper-parameters (includes λ, τpro in semantic seg- 083
mentation and the number of pre-training epochs in panop- 084
tic segmentation) and variants of using multi-modality pro- 085
totype. Note that all experiments are performed on the 086
nuScenes dataset. 087

Study of λ. As shown in Algorithm 1, we use λ to control 088
the beginning epoch of using our proposed prototype-based 089
loss. Meanwhile, the λ denotes the epoch interval of up- 090
dating the mixed prototypes. We examine the influences of 091
different λ and tabulate the results in Tab. 3. We observe 092
that when we decrease λ (e.g., 10 → 5 → 2), there is al- 093
most always exist a performance gain in all settings of dif- 094
ferent percentage labels. In addition, we list the GPU hour 095
required for the pre-training phase at different λ. Consider- 096
ing the oversized hyper-parameter search space and the time 097
cost of pre-training phase, we take 5 as the default value for 098
λ. Also, this demonstrates the potential of using our CSC 099
framework as the multi-modality pre-training baseline. 100
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λ GPU Hours Semantic Seg.
1% 5% 10% 25%

2 29 h 47.4 57.4 63.2 69.4
5 24 h 47.0 57.0 63.3 68.6

10 22 h 46.1 56.6 62.7 68.2

Table 3. Results (mIoU) of modifying the starting epoch λ. The
row with the gray background represent our default value for λ.

Study of τpro. In Tab. 4, we show the impact of various101
temperature τpro in our prototype-based loss. The τpro play102
a role in scaling the similarity scores between superpoint103
and prototype embeddings. According to the experimental104
results, we observe that the pre-trained 3D network achieves105
the best performance at three different labeling setting (1%,106
10%, and 25%), when we set τpro as 1.0. When τpro = 2.0,107
the 3D network achieves the best result at 5% annotation.108

τpro
Semantic Seg.

1% 5% 10% 25%

0.5 46.9 56.9 62.3 68.2
1.0 47.0 57.0 63.3 68.6
1.5 45.7 56.7 62.0 67.3
2.0 46.0 58.4 62.8 68.1

Table 4. Results (mIoU) of modifying the prototype-based loss’s
temperature τpro. The row with the gray background represent our
default value for τpro.

Study of the pre-training epoch. In Tab. 5, we show the109
results about evaluation metrics of PQ, SQ, and RQ at dif-110
ferent pre-training epoch, i.e., 10, 20, and 30. We can ob-111
serve that the PQ metric shows a steady upward trend when112
we increase the pre-training epoch. However, we find a113
counter-intuitive experimental phenomenon when observ-114
ing SQ metric, which is that SQ at epoch = 10 (74.0%) or115
20 (74.5%) is significantly higher than SQ at epoch = 50116
(68.0%). To explore the reason behind such phenomenon,117
we compare the segmentation quality (SQ) metric and the118
SQ changes (∆) for partial classes at epoch = 10 and 50119
in Tab. 6. From this table, we can clearly find that as the120
epoch increases, the 3D network’s semantic segmentation121
ability for bicycle class decreases significantly (↓ 95.0%122
SQ), where the bicycle class is almost absent from the su-123
perpixel semantics obtained by DINOV2 (please refer to the124
semantic distribution of superpixel obtained from DINOV2125
in Fig. 2).126

Pre-Training Epoch
Panoptic Segmentation

1% 5%
PQ SQ RQ PQ SQ RQ

10 18.5 74.0 23.8 22.5 76.4 27.9
20 19.3 74.5 24.6 23.1 76.9 28.5
50 19.7 68.0 25.0 23.4 70.4 28.7

Table 5. Results (PQ, SQ, and RQ) of modifying the number of
pre-training epoch. The row with the gray background represent
the default number of pre-training epoch.

Classes Epoch 10 (%) Epoch 50 (%) ∆ (%)

SQ 74.0 68.0 ↓ 6.0

bicycle 95.0 0.0 ↓ 95.0
bus 73.0 83.7 ↑ 10.7
car 82.3 86.9 ↑ 4.6

motorcycle 90.3 81.3 ↓ 9.0
trailer 85.6 65.0 ↓ 20.6

Table 6. Results for SQ and partial class-wise SQ on nuScenes,
when fine-tuning the pre-trained 3D backbone to panoptic segmen-
tation with 1% lables. We compare two experimental settings with
epochs of 10 and 50, respectively.

Study about variants of using multi-modality prototype. 127
In Tab. 5 of main paper, we have shown the two results of 128
using only 3D prototypes and employing MMPB. To fur- 129
ther analyze, we conduct more variants about how to uti- 130
lize the multi-modality prototypes. Observing the results 131
in Tab 7, we find that (1) simply using raw 2D/3D proto- 132
types, including #(1), #(2), and #(3), does not lead to per- 133
formance improvement but rather to destructive effects; (2) 134
When using our proposed MMPB #(5) or the modified ver- 135
sion of MMPB without Modality-Specific Prototype Projec- 136
tion #(4), it significantly enhances the quality of the 3D pre- 137
trained backbone and improves the performance on down- 138
stream task. The experimental results above demonstrate 139
that our MMPB plays a key role in obtaining a high-quality 140
3D backbone, via effectively projecting and fusing 2D and 141
3D modality prototypes.

# Variants Semantic Seg.
1% 5% 10%

(1) 2D Prototype 40.3 54.5 61.1
(2) 3D Prototype 40.3 53.3 60.5
(3) 2D Pro. + 3D Pro. 41.5 54.2 60.7
(4) MMPB w/o Proj. 45.7 56.7 62.7
(5) MMPB 47.0 57.0 63.3

Table 7. Results (mIoU) of diverse variants of using multi-
modality prototypes. #(1), #(2), and #(3) are three straightforward
ways that employing raw 2D/3D prototypes. #(4) is the modified
MMPB version without Modality-Specific Prototype Projection.
#(5) denotes our complete MMPB. 142

B.4. 2D/3D Prototype Generation 143

. Here, we try other ways than average operation for gener- 144
ating 2D/3D prototypes. In Tab. 8, we try more operations 145
on nuScenes, and observe that average operation is the best. 146

# Operation 1% (mIoU) 5% (mIoU) 10% (mIoU)

(1) Average (Default) 47.0 57.0 63.3
(2) Max 46.7 56.7 62.2
(3) Sum 14.2 16.6 18.6

Table 8. Results of three operations for prototype generation
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B.5. Semantic Distribution of superpixel147

To explore the superpixels generated by the VFM (DI-148
NOV2), we provide both a pie chart and a statistical ta-149
ble of the semantic distribution of superpixels in Fig. 2.150
We observe that only one-third of the superpixels, which151
are generated by DINOV2 and located within the view of152
point cloud, are relevant to our desired autonomous driv-153
ing scenarios. Despite having only these related seman-154
tic categories, i.e., scene-relevant semantic prototypes, our155
CSC model also achieves consistency enhancement of the156
3D pre-trained model for the three downstream tasks. This157
result states that VFM-Assisted Semantic Prototype Gen-158
eration and Coherent Semantic Consistency are effective159
in building a strong pre-training baseline for universal 3D160
large-scale perception.161

C. Public Resources Used162

We acknowledge the use of the following public resources,163
during the course of this work:164

• nuScenes1 . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0165
• nuScenes-devkit2 . . . . . . . . . . . . . . . . . Apache License 2.0166
• SemanticKITTI3 . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0167
• MinkowskiEngine4 . . . . . . . . . . . . . . . . . . . . . MIT License168
• SLidR5 . . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0169
• Cylinder3D6 . . . . . . . . . . . . . . . . . . . . . Apache License 2.0170
• PyTorch-Lightning7 . . . . . . . . . . . . . . .Apache License 2.0171
• OpenPCDet8 . . . . . . . . . . . . . . . . . . . . . Apache License 2.0172
• DINOv29 . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0173
• OneFormer10 . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License174
• SpConv11 . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0175
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Superpixel Semantic Counts Percent (‰)

Wall 80.4K 88‰
Grass 75.8K 83‰
Tree 48.5K 53‰

Building 48.3K 52‰
Sidewalk 33.9K 37‰
Railing 10.1K 11‰

Conveyer 4.3K 4‰
Fence 2.9K 3‰
Bus 2.8K 3‰

Person 2.5K 2‰
Motorcar 110 0‰
Motorbike 28 0‰

Driving Unrelated Classes 603K 661‰

Figure 2. Semantic classes and number of superpixels generated by DINOV2 on the nuScenes dataset. We provide both the pie chart (left
half) and the statistical table (right half) to present the semantic distribution of the superpixels. Note that since we use DINOV2 fine-tuned
on the ADE20K dataset [9], the network classifies each superpixel in 150 categories, most of which are categories that are unrelated to
autonomous driving scenes, such as bed, bench, book, etc. We denote these classes as Driving Unrelated Semantics, which amounted to
603K and accounted for 661‰ of the total.
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