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8. Relationship with OCT-based methods
Optical coherence tomography (OCT) [8] also extracts 3D
information using interferometry. The main difference with
our approach, however, is that OCT is an active approach.

OCT is a time-of-flight-based method, which measures
the time delay caused by the path difference between the
target and reference waves. Using reference waves means
it often requires controlled light sources, often specialized
lasers. One exception is the work of Kotwal et al. [10] who
use OCT under sunlight. However, this isn’t a fully passive
approach because it captures the sunlight in a beam-splitter
and redirects it into the target and a reference mirror. This
direction of sunlight can disturb the subject. Also it tracks
the position of the sun to direct it into the scene.

However, both OCT and our method are based on inter-
ferometry, and share a common constraint on temporal co-
herence length. Temporal coherence length is the maximal
path length difference for a wave that can interfere with its
delayed copy. For laser, it can be several meters long. But
for a filtered white light source, the length is approximately
�
2
/FWHM , where FWHM means the bandwidth of the

bandpass filter. In our case, the temporal coherence length
is around 80µm.

For OCT, temporal coherence length directly impacts the
depth resolution. For our setup coherence length is less
of an issue because the paths of our two interferometer
arms have similar lengths. Still, when calibrating the self-
interference setup, we need to make sure the length differ-
ence between two 4f systems is less than the temporal co-
herence length.

9. Range and resolution analysis
9.1. Simulation setting
To understand the resolution and range of our system in de-
tail, we start with a numerical simulation.

We simulate a larger white plane placed at different
depths from the setup, and fix the magnification ratio to
M = 1. The reflected waves from the planes are composed
of several coherent waves with wavelength � = 600nm,
each wave has a Rect support function with width �c, and
it has a uniform amplitude but random phases at resolution
0.25µm.

We selected coherence and imaging parameters satisfy-
ing the contrast conditions of Eq. (13), �x = 0.75µm,
�� = 2µm and �c = 16µm. We set � = 0.27, which
corresponds to a viewing angle of 15�.To simulate an im-

age of a plane in a certain depth, we iterate over all the
coherent components of the wave and sum up their inten-
sities. We use the Holotorch library in Python to simulate
wave propagation.

9.2. Depth range
We start the derivation by considering the case of unit mag-
nification M = 1 and adapt it to general magnification in
Sec. 9.4.

As we discussed in Sec. 4.2, the range of depths we can
measure is bounded because for far planes the interference
pattern is too weak to be detected. Note that in the images
It, we always measure the summation of the DC term and
interference signal. Thus, while we can increase exposure
or gain to amplify the interference amplitude, it will also
magnify noise in the DC term. Therefore, we normalize
the interference amplitude by the DC component of the ob-
served images. That is, we define contrast, the strength of
the measured signal, as:
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where K(x, y) =
P

t It(x, y) is the DC component of the
interferograms. For fully coherent waves u and v , the con-
trast term C(x, y) equals 2|u||v|

|u|2+|v|2 . With partially incoher-
ent waves we get weaker interference. Effectively, the con-
trast values are always between 0 and 1.

To understand what depth ranges we can cover we ana-
lyze the variance in the position of the peak xp detected at
each row (see Eq. (11)) and the contrast Cp at this pixel.

For each target depth we simulate 100 different planes at
the same depth, and calculate the mean peak contrast C̄p,
and plot it as a function of depth in Fig. 11(a). As expected,
we can see that C̄p decreases when the target plane is not
focused.

We start with the relationship between depth and con-
trast, as summarized in the following claim.

Claim 3 The mean peak contrast scales as C̄p = 0.78
⇣ ,

where
⇣ =

�z

���c
+ 1 (18)

is a “normalized depth”.

We prove the result below, by combining a few supporting
claims.



Figure 11. Numerical analysis of range and resolution (a) The
contrast evaluated with the numerical simulation of Sec. 9.1, using
planar targets at different depths. Contrast is highest when target is
in focus (depth = 0), and decreases at larger distances. (b) Contrast
for different �c and �� parameters, contrast is proportional to the
normalized depth ⇣. (c) The mean pixel position x̄p is linear with
depth. The standard deviation �p marked with bars around the
curve, increases with defocused. (d) We evaluate �p for different
experimental parameters and show that it scales with ⇣.

The above claim not only shows the contrast is inversely
proportional to the depth but also shows that the contrast is
affected by �c and ��. To verify the above claim, we re-
peat the same experiment using different values for �c and
��. As shown in Fig. 11(b), all experiments demonstrate a
consistent behavior agreeing with the theoretical value.

Empirically, for a reasonable detection, contrast should
be larger than 0.2, which implies, following Claim 3, that
we want ⇣  4. A short calculation leads to the conclusion
that we can measure objects inside the depth range:

|z|  ⌦z, with ⌦z =
3���c

�
, (19)

which agrees with Eq. (14) of the main paper for the
magnification M = 1.

To prove claim 3, we first note the reason for reduced
contrast is the overlapping of multiple interference patterns.
When deriving Eq. (10) from Eq. (9), we claim each wave-
front un,m has non-zero content only around (n�c,m�c).
However, when waves get defocused, their support spread
and u

n,m(x, y) can interfere with u
n,m(�x, y) even when

n 6= 0. When multiple interference terms overlap in the
same sensor unit and each of them has a different phases,
the overall contrast is reduced.

To caculate how the contrast is reduced, we start by dis-
cussing the support of the defocused wave as a function of

aperture size.

Claim 4 When z � �c , the support of the defocused
wavefront is �z

�� .

Proof: Consider one wavefront on the target un,m(x, y) re-
layed to the input plane of the orthographic camera as in
Fig. 4. It will first propagate distance z and then be con-
strained by an aperture of width D in the 4f system. Since
only light rays whose angle is within the range D

f pass, by
simple ray optics considerations, the support of the “de-
focus blur”, namely the sensor area at which rays passing
through the aperture hit the sensor, is zD

f . Note that the
aperture shift b will shift the defocus blur position on the
sensor but will not change its width. The diffraction blur
kernel equals �� = �f

D . Therefore, we can rewrite the
support as �z

�� .

Claim 5 The number of incoherent components interfering
in each sensor point is ⇣2, with

⇣ =
zD

f�c
+ 1. (20)

Note that the term ⇣ is a linear function of the depth z, hence
we refer to it as the “normalized depth”. Proof: Since the
center of the waves un,m(x, y), un,m(�x, y) are separated
horizontally by 2|n|�c, they will interfere if 2|n|�c <

�z
�� .

For example, if �z
���c = 2, then interferences occur for n

values n = �1, 0, 1. Thus the number of incoherent com-
ponents interfering is ⇣2, with ⇣ = zD

f�c + 1.
Next we derive how the number of interfered compo-

nents effects the contrast we can measure. For this, we re-
view a standard result in statistics, showing that with N in-
dependent coherent components the contrast scales as 1p

N
.

Claim 6 Consider N pairs of independent random vari-
ables U1, . . . UN , V1, . . . VN , then

E [
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(21)

The intuition behind this result is that the numerator of the
contrast is the summation of N independent complex val-
ues, while the denominator sums N positive values. When
complex values are summed, terms can cancel each other
and reduce contrast.

By combining claims 5 and 6 we see that since we aver-
age ⇣2 number of waves, the contrast is inverse proportional
to 1

⇣ . Finally, if both real and imaginary parts of Un and Vn

are Gaussian variables with the same variance, the expected
contrast is around 0.78 when N = 1. By combining these
arguments we arrive at claim 3.



9.3. Depth resolution
As derived in Eq. (12), the estimated depth is ẑ = xp

� .
Therefore, the resolution at which we can detect depth de-
pends on the accuracy at which we can detect xp. As il-
lustrated in Fig. 7, the interference pattern we image is a
speckle pattern whose width is a few pixels, and the de-
tected maximal xp can somewhat vary inside the speckle
pattern. We define �p to be the standard deviation of the
xp position. We numerically compute this variance using
the numerical simulation described in Sec. 9.1, by sampling
multiple random realizations for each depth plane. �p are
plotted in Fig. 11(c), demonstrating that the standard devi-
ation of the detected depth increases when we are further
from the focal plane and wider defocus blur is present. In
Fig. 11(d), we repeat the simulation for a few other imag-
ing configurations and observe that the standard deviation is
proportional to the normalized depth ⇣ of Eq. (18). As men-
tioned above, in practice we can detect depth in the range
⇣  4. Within that range we empirically observe that the
average �p value, is around around 0.3�c. Since the depth
is ��1

xp, this leads to the conclusion that the depth resolu-
tion is

�z ⇡ 0.3�c

�
. (22)

While increasing the tilt angle � improves depth resolution,
in practice wide angles are more susceptible to optical aber-
rations.

9.4. Magnification
As stated in Sec. 3.3, before the self-interference part, we
can add an additional lens to scan and scale the scene.
Below we derive how such lens magnification changes
the depth range and resolution that we can recover. We
show that the range and resolution are scaled linearly with
the magnification, but the number of distinguishable depth
planes does not change.

To see this consider Fig. 12. A lens magnifying the target
by a factor M will have two effects. First the spatial size of
features is scaled by M , and in particular, if the coherence
length of the illumination hitting the actual target is �c, the
coherence length of the scene imaged by this lens is M�c.
On the other hand, the depth planes are scaled by M

2.
The fact the depth is scaled by M

2 means that if with-
out the magnifying lens the our system could cover depth
range ⌦z , the depth ranged mapped into this range by the
magnifying lens is ⌦z/M

2.
One the other hand, the depth range and resolution de-

rived in Eqs. (14) and (22) depend on �c, and �c is scaled
by M . As a result, the depth range we can cover is only
⌦z/M .

A similar argument shows that the depth resolution �z

is scaled to �z/M .
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Figure 12. Translating an additional lens to scan the scene.
Since our main setup can only scan a vertical slice of the scene,
we add a relay lens in front of the main setup. By translating this
lens we can scan different lines of the target, since a different strip
of the scene is mapped to the reflection axis of the main setup. The
relay lens can also magnify the scene.

(a) (b)

Figure 13. Comparison between real and simulated results. (a)
Comparing contrast. (b) Comparing the standard deviation of peak
position �p. While we do not know precisely all the parameters
of the real system, the measured and simulated curves follow a
similar behavior.

Since both ⌦z and �z are scaled by the same factor, the
number of depth planes we can distinguish does not change
with magnification. However, note that M�c needs to re-
main larger than ��, so we cannot scale the scene arbitrar-
ily small.

9.5. Comparing numerical simulation to experi-
mental measurements

In Fig. 13 we compare the contrast and the variance of the
mean peak position between numerical simulations. For
that we use the experiment described in Sec. 5.2 and Fig. 8
of the main paper, were we vary the position of a planar tar-
get on a motorized stage and attempt to estimate the depth
of these images. We compare the variance and contrast of
the real system to the ones predicted by our analysis and
numerical simulation above. While some differences exist,
both real measurements and numerical predictions follow a
similar behavior.



(a) Aluminum (b) Paper (c) Resin (d) Foam

Figure 14. Interference images with different materials. While
a metallic target results in a strong, narrow interference image, ma-
terials with more subsurface scattering result in interference im-
ages of wider support, hence depth estimation is noisier.

10. Results with different materials

10.1. Materials with subsurface scattering

As mentioned in the main paper, subsurface scattering blurs
the wavefront and hence reduce the interference contrast.
To minimize this problem, most of the results in the main
paper use metallic targets.

Here we test the effect of subsurface scattering. In
Fig. 14 we test the coherence of a few material. We cap-
ture plane targets under a swept-angle illumination with
�c = 54µm and � ⇡ 0.05. For the aluminum target in
Fig. 14(a), the interference image is a clear vertical line.
However, the line has a wider spread for the paper and resin
targets. For the foam target, interference noise can appear
other the entire frame. Below we show that the wider sup-
port reduces depth resolution.

10.2. Results with swept-angle illumination

In Fig. 15 we present additional depth acquisition results
with a few other targets, and with different materials. In
this figure we use the monochromatic swept-angle illumi-
nation. The first row is a metal statue of an old man. As
the target is metallic, we can reconstruct details such as the
height difference between nose and beard. The second row
is a paper plane target. While the paper has subsurface scat-
tering, we can still reconstruct depth planes since the tar-
get is rather simple. The third row is a resin statue of “the
thinker”. The reconstruction is recognizable, though some
subsurface scattering reduces the reconstruction accuracy.
The last row is a resin cat with painted eyes and mouths.
The specularity in the eye and the texture change near the
mouth, leading to reconstruction artifacts.

For non-metallic targets under sunlight, the contrast re-
duction now combines two factors, subsurface scattering
and the non-monochromatic illumination. Overall the in-
terference contrast is too weak and we did not manage to
reconstruct such targets.

11. Reconstruction algorithm details
The naive depth extraction equation described in Sec. 3.2,
is to find the peak of the interference amplitude in each row
and calculate the target depth from the shift.

In practice, processing each row independently is very
noisy, because the interference signal contains speckles. To
improve robustness we use the following filtering stages,
illustrated in Fig. 16.

First, since image intensities may not be uniform, we
normalize the interference amplitude by the DC component
before extracting its peaks.

Second, we assume the target is smooth and blur the in-
terference signal with a 2D Gaussian filter before extracting
its peak. We blur the vertical axis with a Gaussian of s.t.d.
50 pixels, resulting in a similar depth estimate in nearby
rows. We blur horizontally with a smaller s.t.d of 15 pixels
to eliminate some of the speckles. The extracted peaks after
blurring are visualized in Fig. 16(d).

In the third stage, we further eliminate noise by using
the Viterbi algorithm to select the peak of each row while
forcing nearby rows to have similar values. The result of
this stage is visualized in Fig. 16(e).

Finally, after we combine multiple vertical scans, we fur-
ther smooth the depth map by applying a small horizontal
Gaussian filter of s.t.d 2 scans (corresponds to ⇡ 200µm).

12. Prototype detail
12.1. Michelson interferometer with LC cell
As mentioned in Sec. 5.1, for better stability we use an LC
cell to delay one arm instead of translating a mirror, (trans-
lating a mirror with sub-wavelength accuracy requires very
precises stages).

Since an LC cell is a birefringent component that can
delay linearly polarized light aligned with its fast axis, if
the two paths of the interferometer have orthogonal polar-
izations, only one arm is delayed. To do this, as shown in
Fig. 17, we first linearly polarized the light at 45 degrees to
ensure horizontal and vertical polarized light are coherent.
Thereafter, we put two linear polarizers in the two paths,
one with oriented vertically and the other is oriented hor-
izontally. We align the fast axis of the LC cell with one
path and thus only delay that path. Finally, we need another
linear polarizer rotated by 45 degrees to combine the two
orthogonal paths and interfere them.

12.2. Shifting lens for scanning
In Sec. 3.3, we mentioned that we scan the scene by
shifting a lens in front of the setup. We further explain this
in Fig. 12. This shift makes different vertical lines from
the scene mapped to the flipping axis of the main system;
hence, effectively, we flip along different lines in the scene.
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Figure 15. Reconstruction results with swept-angle light source. Targets in different rows are made of different materials. Targets with
stronger subsurface scattering (paper, resin) have reduced depth resolution and can have artifacts when texture or material changes.
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Figure 16. Steps of the peak detection algorithm. (a) The cap-
tured interference image, dominated by speckle noise. (b) Detect-
ing the peak position in every row independently leads to noisy re-
sults. (c) Filtering the interference image (d) Peaks detected from
the filtered images are smoother. (e) We further improve the depth
extraction using the Viterbi algorithm.
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Figure 17. Polarized interferometer. Our interferometer is im-
plemented using polarization rather than a translating mirror. The
two arms are designed to have orthogonal polarization and used an
LC cell to delay only the horizontally polarized waves.



a 45° linear polarizer
b Lens (f = 75mm)
c Beam splitter
d

Vertical linear polarizer
e

Horizontal linear polarizer

f
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g Hollow roof retroreflector
h Lens (f = 75mm)
i Bandpass filter (Thorlab FLH633-5) 
j LC cell (Thorlab LCC1115-B)

k 45° linear polarizer
A Lens (f = 50mm)
B Translation cage plate (Thorlab CPX1)
C Aperture
D
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Figure 18. Prototype. List of components used in our setup.

Also, the amount of shifting lens depends on the range
of the target to scan as well as the magnification rate
M . For a target width w, the lens needs to be shifted
by w/(1/M + 1), and we mount the lens on a motor-
ized translation stage to shift the lens in around 0.1mm

resolutions.

12.3. Components list

Following the schematic of Fig. 5, we implement a hard-
ware prototype as in Fig. 18. For the self-interferometer
marked in orange, we use two lenses with f = 75mm. Both
the mirror and the hollow roof retroreflector are placed at
the Fourier plane. As discussed in Sec. 12.1, we use an LC
cell with several polarizers to replace the translation stage.

For the tilted orthographic camera system marked in
green, we use two lenses with f = 50mm. The aperture
in the Fourier has an adjustable size D and a controlled hor-
izontal displacement b. The camera sensor has pixel pitch
�x = 1.85µm. For the scanning lens marked in blue, we
use a camera lens with f = 50mm mounted on a motorized
translation stage. It can imaged a target at 2f = 100mm

away with magnification ratio M = 1 and 3f = 150mm

away with M = 0.5.

12.4. Calibration detail

In this section, we describe the steps we use to build and
calibrate our setup in detail. We suggest the reader first pre-
pare a swept-angle light source [9], which has an adjustable
coherence length. The rest of the steps are as follows:
1. Mount the beamsplitter (c). The whole set-up will be

built around the beamsplitter.
2. Mount the mirror (e) on a kinetic mount that can adjust

the tilt angle, and attach it to the beamsplitter (c).
3. Attach one lens (b) to the beamsplitter. Calibrate its axial

position so the mirror is f-away(75mm) from the lens.
4. Mount the hollow roof retro-reflector (g) on a translation

stage that can adjust lateral positions and attach to the
beamsplitter. Calibrate the axial position of (g), so it is
also f-away(75mm) from the lens (b).

5. Temporarily put a target f-away (75 mm) behind the lens
(b). Observe it from the camera focused at infinity (D,E).
We should see that the target and its flipped version are
both in focus.

6. Adjust the angle of the mirror (e), so the center of the
target is aligned with its flipped version.

7. Attach the second lens (h) to the beamsplitter and cali-
brate it to be f-away(75mm) from both the mirror (e) and
the retro-reflector (g).

8. Attach another lens (A) behind the lens (h). The dis-
tance between them is a summation of their focal lengths



(75mm+50mm), so the camera focused at infinity (D,E)
can again see the target in focus.

9. Mount the aperture (C) on the translation cage plate (B)
and calibrate it to be f-away(50mm) from the lens (A).
We first keep (B) in the center position.

10. Attach cross polarizers (d,f) onto the beam splitter. We
suggest slightly slanting the polarizer in vertical direc-
tions to avoid ghosting.

11. Mount 45-degree linear polarizers (a,k) as well as LC
cell (j).

12. Illuminate the target with the swept-angle light source.
When performing phase-shifting interferometry with LC
cell (j), we should be able to observe a high contrast in
the reflection axis as in Fig. 8.

13. Calibrate the lateral position of the retro-reflector to
maximize the contrast.

14. Shift the aperture on the translation cage plate (B,C);
now, the targets at different distances will result in dif-
ferent contrast peak positions.

15. Add the bandpass filter (i) to enable using a white light
source. We also need to use a motorized translation stage
to finetune the axial position of the retro-reflector (g), so
the difference between the optical length of two arms is
less than 80µm.

16. Mount an additional lens (1) on a translation stage (2) to
enable scanning the full scene.


	. Introduction
	. Background
	. Review of interferometry
	. Self-interference under natural illumination

	. Coherence As Texture
	. Isolating coherent components
	. Depth from disparity shift
	. Scanning and scaling the target
	. Full 3D reconstruction

	. Resolution and range analysis
	. General interferometric considerations
	. Range and resolution in our system

	. Hardware experiments
	. Prototype
	. Range and resolution evaluation
	. 3D results with a swept-angle illumination
	. 3D results under natural illumination

	. Limitations
	. Conclusion
	. Relationship with OCT-based methods
	. Range and resolution analysis
	. Simulation setting
	. Depth range
	. Depth resolution
	. Magnification
	. Comparing numerical simulation to experimental measurements 

	. Results with different materials
	. Materials with subsurface scattering
	. Results with swept-angle illumination

	. Reconstruction algorithm details
	. Prototype detail
	. Michelson interferometer with LC cell
	. Shifting lens for scanning
	. Components list
	. Calibration detail

	. Unused content
	. Derivation of shifted PSF
	. Limitation of FINCH in reconstruct textureless planes
	. Importance of the retro-reflector


