
ConsistDreamer: 3D-Consistent 2D Diffusion for High-Fidelity Scene Editing

Jun-Kun Chen1† Samuel Rota Bulò2 Norman Müller2 Lorenzo Porzi2

Peter Kontschieder2 Yu-Xiong Wang1

1University of Illinois Urbana-Champaign 2Meta
{junkun3,yxw}@illinois.edu

{rotabulo,normanm,porzi,pkontschieder}@meta.com

Supplementary Material

This document contains additional analysis and extra ex-
periments. The content of this document is summarized as
below:

A. Supplementary Video (SV) 1

B. Comparisons with Additional Baselines 1
B.1. CSD [6] . 2
B.2. DreamEditor [18] 2
B.3. Edit-DiffNeRF [16] 2
B.4. Instruct 3D-to-3D [5] 3
B.5. Concurrent Works: GE [2], EN2N [12], And

PDS [7] 3

C. CLIP [9] Metrics In IN2N [4] 3

D. Implementation Details 3
D.1. Hyperparameters and Settings 3
D.2. Viewpoints And Camera Trajectory 3
D.3. Training Schedule 3
D.4. Structured Noise Implementation 5
D.5. Surrounding Views - Reference View Selection 5
D.6. Training - Pixel Weights 5
D.7. Training - Multi-GPU Pipeline 5
D.8. Training - Regularizations 5
D.9. Variant “IN2N” And IN2N [4] 6

E. Supporting Evidence for Claims 6
E.1. Diffusion Models Perform Well with Com-

posed Images 6
E.2. Different Noises Lead to Varied Results . . . 6

F. Additional Ablation Study Analysis 6
F.1. ‘No Str. Noise’ vs. ‘Only Sur. Views’ 6
F.2. ‘Only Sur. Views’ vs. ‘IN2N’ 6

Figure B.1. Qualitative comparisons with baseline CSD on three
tasks show that our ConsistDreamer achieves high-quality editing,
outperforming both IN2N and CSD with more successful editing.

G. Discussion 7
G.1. Extension to Scene Generation 7
G.2. Limitations 7
G.3. Future Directions 8

A. Supplementary Video (SV)
To better visualize our results and compare with base-
lines beyond static 2D images, we provide a supple-
mentary video (SV) on our project page at immor-
talco.github.io/ConsistDreamer. We also include a short
demo in this video, to enhance the understanding of 3D-
consistent structured noise. The original size of the video is
around 1.25GB, therefore we have to compress it to fit it in
the upload size limitation of 200MB on OpenReview.

In the following sections, we use SV to refer to this sup-
plementary video.

B. Comparisons with Additional Baselines
In the main paper, we compare our ConsistDreamer with
IN2N [4] and ViCA [3]. In this section, we compare

1

https://immortalco.github.io/ConsistDreamer/
https://immortalco.github.io/ConsistDreamer/

Figure B.2. Compared with DreamEditor, our ConsistDreamer
achieves better editing, which not only follows and satisfies the
given instructions, but also preserves as much content of the orig-
inal scene as possible. On the contrary, DreamEditor completely
edits the original person to another in all the tasks.

our ConsistDreamer with other baselines and provide some
analysis. These methods either do not have publicly avail-
able code, or evaluate on the scenes which are not supported
by NeRFStudio. Therefore, we could only compare our
ConsistDreamer under the tasks used by them, with the pro-
vided visualizations from their papers or websites.

We also provide some comparisons in the video format
of the baselines in SV.

B.1. CSD [6]

CSD is a method focusing on general consistent generation,
including large image editing, scene editing, and scene gen-
eration. We compare our ConsistDreamer with CSD un-
der three tasks shown on the website of CSD1: Low-Poly
(Graphic), Anime, and Smile.

As shown in Fig. B.1 and SV, our ConsistDreamer sig-
nificantly outperforms IN2N, which fails in the Low-Poly
and Anime tasks, and has the side effects of adding beards

1https://subin-kim-cv.github.io/CSD/

Figure B.3. Our ConsistDreamer achieves consistent editing in the
checkered/plaid pattern (also visualized as smooth video in SV),
while Edit-DiffNeRF has obvious inconsistency in the shape and
texture of the collar.

in the Smile task. Compared with CSD, our editing in
the Low-Poly task is more noticeable, with a successfully
edited hair part. Our edited scene in the Smile task is the
only one among all three to successfully show the teeth
when smiling, while CSD’s result contains strange muscles
as if the person is keeping a straight face. In conclusion,
our ConsistDreamer achieves more successful editing than
CSD.

B.2. DreamEditor [18]

DreamEditor is another method focusing on scene editing,
but with another diffusion model [11] instead of [1]. As
NeRFStudio does not support the other scenes, we compare
our ConsistDreamer with DreamEditor by comparing Fig.
3 in our main paper with Fig. 8 in [18].

Fig. B.2 presents the results in these tasks, along with
other baselines in Fig. 3 in our main paper. It shows that
our ConsistDreamer preserves most of the contents in the
original scene while editing, e.g., the shape of the head and
face, and the shape and type of the clothes, minimizing the
side effects of editing. DreamEditor, however, completely
edits the person to another person, even in the Fauvism task,
which is supposed to be only style transfer. This demon-
strates that our ConsistDreamer achieves more reasonable
editing than DreamEditor.

B.3. Edit-DiffNeRF [16]

Edit-DiffNeRF is another paper that also claims to suc-
cessfully complete the checkered/plaid pattern. As they

https://subin-kim-cv.github.io/CSD/

did not provide any code, we compare our ConsistDreamer
with the images provided in their paper. As shown in Fig.
B.3, our ConsistDreamer achieves consistent editing among
all three views, while Edit-DiffNeRF’s results are multi-
view inconsistent, obviously shown in the collar part. The
smooth video of our rendering result in SV also shows the
consistency of our ConsistDreamer. These results validate
that our ConsistDreamer archives significantly better con-
sistency in checkered/plaid patterns, while Edit-DiffNeRF
fails to achieve such consistency.

B.4. Instruct 3D-to-3D [5]

Instruct 3D-to-3D is a method focusing on style transfer of
scenes. It uses LLFF and NeRF Synthetic (NS) scenes as
editing tasks instead of the widely-used IN2N dataset. In
contrast, we focus on editing more challenging and realis-
tic scenes. In addition, as NeRFStudio and NeRFacto do
not support LLFF and NS datasets well (more specifically,
NeRFStudio does not support the LLFF dataset, and NeR-
Facto works well in real scenes but not in synthetic scenes
like NS), we cannot compare with Instruct 3D-to-3D on
these two datasets. Moreover, the code of Instruct 3D-to-
3D is not publicly available. Therefore, we are unable to
compare with Instruct 3D-to-3D.

B.5. Concurrent Works: GE [2], EN2N [12], And
PDS [7]

[2, 7, 12] are three concurrent works. GE [2] and EN2N [12]
achieve 3D editing through the same 2D diffusion model
[1] and have some modifications in the pipeline or scene
representation, while PDS [7] proposes another distillation
formula and uses DreamBooth [11] for editing.

The comparisons against them are in Fig. B.4. Our
ConsistDreamer generates high-quality editing results with
brighter color and clearer textures, while all these concur-
rent works generate blurred textures, gloomy colors, and/or
unsuccessful or unreasonable editing.

C. CLIP [9] Metrics In IN2N [4]
We provide the quantitative comparison with CLIP [9] met-
rics introduced in IN2N [4] in Tab. C.1. In all four abla-
tion scenes, ours significantly and consistently outperforms
IN2N in both metrics.

D. Implementation Details
D.1. Hyperparameters and Settings

In our experiments, we use the multi-GPU pipeline with
n = 3 (4 GPUs in total), and surrounding views of k = 5
(1 main view and 12 reference views).

The learning rate of each component is shown below:
• NeRFacto [13]: 5 × 10−3 for field part, and 10−2 for

proposal network part.

• LoRA-augmented diffusion model [1]: consistent with
their original implementation (10−4).

• Learnable 3D positional embedding: 2× 10−3.
All the views are resized to 3 : 4 or 4 : 3 according

to their orientations. For landscape images (portrait images
use the same setting with a flipped height and width), the
diffusion model takes a surrounding view image input at
1152 × 864 (also 4 : 3), with horizontal splitters at heights
6pix, and vertical splitters at widths 8pix. The sizes of the
main view and reference views are 688 × 516 and 224 ×
168, respectively. This setting is consistent with the original
usage of diffusion models [1, 10] trained at 512 × 512, as
our main view has a height close to it.

Consistent with IN2N [4], both MSE and LPIPS losses
are used to train NeRF.

D.2. Viewpoints And Camera Trajectory

During the distillation process, we directly use the view-
points provided in the original scene dataset, which is suf-
ficient to cover the whole scene. In visualization, we use
the provided camera trajectory for IN2N [4] dataset, and
manually construct another camera trajectory for a smooth
visualization for ScanNet++ [15] dataset.

D.3. Training Schedule

One standard full training contains 1, 600 epochs across
multiple sub-stages. All these stages are explained below:
• Initialization Stage (Epoch 1 ∼ 200): Train diffusion [1]

before NeRF fitting. We perform one diffusion training
step in one epoch.
– Early Bootstrap (Epoch 1 ∼ 50): Train the LoRA-

augmented diffusion model to mimic the behavior of
the original model with the augmented input of 3D po-
sitional embedding. The weight regularization loss of
maintaining original behavior (detailed in D.8) is sig-
nificantly higher. NeRF training has not started.

– Bootstrap (Epoch 51 ∼ 150): Train the consistency-
awareness of the LoRA-augmented diffusion model
while keeping original behavior, at a similar impor-
tance with balanced weights.

– Warming Up (Epoch 151 ∼ 200): Use the standard
weights to balance the consistency loss and regulariza-
tion, focusing more on consistency. This epoch gen-
erates sufficient images for the edited view buffer for
NeRF fitting.

• Distillation Stage (Epoch 201 ∼ 1600): Train diffusion
while fitting NeRF. In each of 4 epochs, we do 3 diffu-
sion generation steps without training (to fill the edited
view buffer), and only one diffusion training step. Here,
the “noise level” means the mixture rate of the current
NeRF (being edited) rendered image and the noise as the
diffusion’s input: full noise level means using only noise
for generation (standard generation), while a 30% noise

Figure B.4. Our ConsistDreamer outperforms all three concurrent works with brighter color, clearer textures, and better editing results
matched with the editing instruction.

Method Text-Image Direction Similarity (CTIDS) ↑ Direction Consistency (CDC) ↑
A B C D A B C D

Ours 0.0259 0.1679 0.1204 0.1268 0.5785 0.1735 0.3077 0.2878
IN2N [4] 0.0099 0.1252 0.1163 0.1055 0.5106 0.1634 0.2900 0.1772

Table C.1. Our ConsistDreamer significantly and consistently outperforms baseline IN2N in CLIP [9] metrics over all four ablation scenes.

Figure D.1. Our multi-GPU training pipeline uses n + 1 GPUs, one dedicated for NeRF fitting, and the others for diffusion training and
generation.

level means the input image is the mixture of 30% noise
and 70% rendered image.
– Full Noise Generation (Epoch 201 ∼ 500): The diffu-

sion model is trained and used for generation at a full
noise level to edit the views sufficiently regardless of
NeRF.

– Pre-Annealing (Epoch 501 ∼ 600): The diffusion
model is trained and used for generation with a noise
level sampled from [70%, 100%]. It edits the views
with a few references to the current NeRF, starting to
refine the current NeRF.

– Annealing (Epoch 601 ∼ 1500): Following the idea
of HiFA [17], the range of the noise level linearly an-
neals from [70%, 100%] to [10%, 40%]. The NeRF will
gradually converge to a fine-grained edited version.

– Ending (Epoch 1501 ∼ 1600): The diffusion model is
trained and used for generation with a noise level sam-
pled from the annealed range [10%, 40%], to further
refine the edited NeRF.

If the editing task requires editing the geometry or shape
of the scene (“shape editing”), the depth-based warping us-
ing the depth of the original scene will be inaccurate. There-

fore, in the Initialization Stage, we put the original diffu-
sion model’s output to the edited view buffer for NeRF fit-
ting, equivalently using IN2N in this stage. In the distilla-
tion stage, the shape of the NeRF will be adjusted to the
edited shape in a short time, and then we will start to use
the trained diffusion model’s output for NeRF fitting.

In our experiments, most IN2N scenes converge to a fine-
grained edited scene at 600 ∼ 700 epochs, while Scan-
Net++ [15] scenes take around 1000 epochs.

D.4. Structured Noise Implementation

In the main paper, the structured noise is implemented by
constructing “a dense point cloud of the scene by unproject-
ing all the pixels in all the views”, and rendering/projecting
such a point cloud at a view to generate the structured
noise. Directly implementing this literal description is com-
plicated and inefficient.

Therefore, we use an equivalent implementation.
• Instead of explicitly generating this dense point cloud, we

just put the weighted noises on each pixel of all views.
• For the view we query for structured noise, we warp the

noise from all other views to it. This is equivalent to pro-
jecting the sub-point cloud generated by each view to the
querying view; therefore, it is equivalent to the original
design.
With this implementation, explicitly generating, main-

taining, and projecting a point cloud with billions of points
(number of views × height × width) is unnecessary, and a
query can be completed in less than one second.

D.5. Surrounding Views - Reference View Selection

We construct the surrounding view with one large main
view and several small reference views. The purpose of
the reference views is two-folded: (1) to provide enough
context about the whole scene, and (2) to have enough
overlapped parts of the main view to facilitate consistency-
enforcing training. Therefore, we select 40% of the views to
be a random view of the scene, and the rest 60% of the views
to be a view with at least 20% overlap of the main view
(quantified by the area of matched pixels through warping).
The order of the views is randomly shuffled. We observed
that none of these randomnesses highly alter the editing re-
sult – after consistency-enforcing training, any choice of
reference views and their order will lead to a consistent
edited result of the main view.

D.6. Training - Pixel Weights

In consistency-enforcing training, we apply warping and
weighted averages to compute the training reference views
{v′}, so that all the views in {v′} are 3D consistent. Using
identical weights for all pixels will result in blurred images:
In a scene of a person, one view only contains their face,

and another view contains the whole body. Warping the lat-
ter to the former indicates an upsampling of the face part,
which will be blurred. Merging the blurred, warped view
with the former view at the same weight results in blurred
overall results.

We propose a better pixel-weighting strategy based on a
further analysis of this situation. If we warp pixel a to pixel
b, where a has a larger “scope” and contains more scene
objects, then we need to upsample the b part of the view
from a, resulting in blurry. Therefore, the weight should be
related to the scope of the pixel. Following this, we define
the pixel area to quantify this scope. For a pixel p in a view
from camera position o, the four vertices of the pixel grids
correspond to the rays {o+tdi}4i=1. We use NeRF to predict
each of their depth {ti}4i=1, and calculate their correspond-
ing points Pi = o+ tidi. The pixel area S(p) of this pixel is
defined as the area of a square with vertices P1, P2, P3, P4

in the 3D space, which can be regarded as an approximation
of the surface area the pixel represents. As we need a lower
weight for a pixel with a larger scope, i.e., larger S(p), we
define the weight as 1/S(p), which satisfies all our needs.

D.7. Training - Multi-GPU Pipeline

An illustration of our multi-GPU training pipeline is in Fig.
D.1. By implementing such a parallelization pipeline by
ourselves, we decouple NeRF training with diffusion gen-
eration and training in the most asynchronized way, waiving
the necessity of trade-offs between NeRF training and dif-
fusion, achieving considerable speed up.

D.8. Training - Regularizations

We use the consistency loss as the main loss in the
consistency-enforcing training. However, this loss only en-
forces several equalities (required by consistency), leading
to trivial results of a pure-color image without regulariza-
tion losses – this is also reasonable as all pure-color images
of the same color are perfectly consistent. Also, there is no
encouragement or enforcement to use the 3D information in
the 3D positional embedding. To avoid these, we propose
several regularization losses, as shown below:
• Maintain Original Behavior. We expect that the trained

diffusion model will generate images that are very similar
to the original model when all the inputs (image, noises,
and 3D positional embeddings) are identical. Therefore,
we use MSE and VGG perceptual and stylization losses,
to regularize both the generated images and the con-
structed referenced images (with gradient, generated by
warping and averaging) of the trained diffusion, with the
original model’s output. We further expect that the UNet
in the trained diffusion model predicts similar noises at
each denoising step as the original UNet, so we also use
this to regularize during each denoising step.

• Encourage 3D Information Utilization. The original [1]

takes the original image of the scene as another part of
input, using it as a condition to generate the edited image.
To encourage 3D information utilization, we design a reg-
ularization loss, to enforce the diffusion model without
the original image input to generate very similar results
to the one with the original image input (both with 3D po-
sitional embedding input). With the lack of the original
image, the only way for the diffusion model to perceive
the original view is the 3D positional embedding. There-
fore, the diffusion is trained to use the 3D positional em-
bedding at least for novel view synthesis to recover the
original image, encouraging the utilization of 3D infor-
mation. This regularization loss is also applied on the
UNet in each denoising step.

• Encourage Consistent Editing Style. The diffusion model
has some diversity in editing. However, we need to con-
verge to one specific style in one editing procedure, oth-
erwise, the NeRF may use view-dependency to overfit
different styles at different views. Therefore, in the Pre-
Annealing step (Sec. D.3), we use the NeRF’s rendering
result to supervise the diffusion model, to make it con-
verge to the style NeRF converges to.

D.9. Variant “IN2N” And IN2N [4]

In our ablation study in the main paper, we have a variant
“IN2N” being our full ConsistDreamer with all three major
components removed. In this section, we discuss how it
is equivalent to an implementation of IN2N, and the major
differences between them.

IN2N is a method that (1) gradually generates newly
edited images with a noise level (detailed in Sec. D.3) sam-
pled from [70%, 98%], and (2) uses the newly generated
images to fit the NeRF, while the fitting NeRF’s rendering
results can affect the following editing (through the input
of diffusion model as a mixture with noise). This matches
our pre-annealing sub-stage. Therefore, “IN2N” includes
vanilla IN2N as a sub-procedure. Additionally, “IN2N” has
the following improvements beyond IN2N:
• IN2N only samples noise levels from [70%, 98%]. This

makes IN2N (1) sometimes unable to sufficiently edit the
scene due to the absence of 100% noise level editing (e.g.,
unable to achieve a Lord Voldemort editing with no hair
in Fig. B.2), and (2) cannot refine the editing results based
on a converged style, and sometimes even deviates from a
converged style to another, as the noise level is always as
high as 70%. The variant “IN2N” starts at a full noise be-
fore the pre-annealing sub-stage, guaranteeing sufficient
editing. After the pre-annealing sub-stage, “IN2N” an-
neals the noise level range to refine the results, leading to
a more fine-grained editing.

• IN2N adds the newly edited image to the dataset by re-
placing a subset of pixels, which may negatively affect
the LPIPS/perceptual loss. “IN2N” uses an edited view

buffer to fit NeRF containing only full, edited views, on
which the perceptual loss can perform well.

In conclusion, our variant, “IN2N,” is an equivalent and im-
proved implementation of IN2N. As shown in SV, “IN2N”
generates noticeably better results than IN2N.

E. Supporting Evidence for Claims
E.1. Diffusion Models Perform Well with Composed

Images

As shown in Fig. E.1, the pre-trained diffusion model [1],
though not directly trained in this pattern, still works as ex-
pected in surrounding views. It generates editing results for
each sub-view individually while all of them also share a
similar style, across various scenes, including indoor, out-
door, and face-forwarding scenes.

Notably, as shown in the last row, when editing a view
with little context, directly editing the single view fails.
Constructing a surrounding view using it as the main view,
however, helps the diffusion model [1] to achieve success-
ful editing. This shows the effects of surrounding views in
achieving successful and consistent editing.

E.2. Different Noises Lead to Varied Results

As shown in Fig. E.2, generation from different noises leads
to completely different images, which is the fundamental
constraint of all the baselines, which do not control the
noise. Even with surrounding views, the diffusion model
[1] still generates images in highly inconsistent ways. The
diversity of the diffusion model under different noises is de-
sirable in 2D generation and editing, but has to be controlled
in 3D generation for consistency.

F. Additional Ablation Study Analysis
F.1. ‘No Str. Noise’ vs. ‘Only Sur. Views’

Both variants do not have structured noise. Hence, the
consistency-enforcing training in ‘No Str. Noise’ forces
the model to generate the same result from different noises,
which leads to mode collapse and degrades the editing result
towards blurred, averaged color. These negative effects of
training in ‘No Str. Noise’ leads to similar and even worse
results and DFS than ‘Only Sur. Views’ with no training.

F.2. ‘Only Sur. Views’ vs. ‘IN2N’

Tasks B,C,D are style transfer, specifically well supported
by our current 2D diffusion model [1]. Our DFS metric,
based on FID, uses a feature extractor with more tolerance
for different style transfer results in the same image. Hence,
even ‘IN2N’ performs comparably with a slightly lower
DFS.

By contrast, task A is a general object-centric editing
with diversified editing manners – different valid editing re-

Figure E.1. The pre-trained diffusion model [1] works as expected on surrounding views, by editing each sub-view in the instructed way
individually but in a consistent style. Notably, as shown in the last row, the surrounding view enriches the context, making the diffusion
model succeed in views that fail in single-view editing.

Figure E.2. Even for the same view, generating from different noises does not necessarily lead to the consistent i.e., the same, edited result.
Each column represents a generation from a noise different from other columns.

sults can have jackets with completely different colors and
styles. There can even be geometric changes in the cloth-
ing without surrounding views as context to constrain the
editing, leading to a significantly worse DFS for ‘IN2N.’

G. Discussion
G.1. Extension to Scene Generation

The proposed ConsistDreamer primarily focuses on the
distillation-guided 3D scene editing task. However, the core
contributions – structured noise, surrounding views, and
consistency-enforcing training – can also be extended to the
scene generation task. For example, these components can
be used in the refinement phase, when the shape of a scene
is roughly determined. In this way, these components could
help achieve consistent and high-fidelity generation, refin-
ing the shape with slight adjustments for more detailed and

precise geometry. Compared with previous methods [8, 14],
this method can generate scenes with detailed, high-fidelity
textures and shapes, without mesh exportation or fixing ge-
ometry.

G.2. Limitations

This section discusses the limitations of ConsistDreamer,
which are also the common challenges encountered by ex-
isting 3D scene editing methods.
View-Dependent or Specular Effects. Our Consist-
Dreamer pipeline performs consistency-enforcing training
by warping and averaging between different views. This
procedure enforces that each part of the scene “looks the
same” in different views, i.e., is view-independent, mak-
ing the edited scene unlikely to show view-dependent or
specular effects. To preserve the ability to generate view-
dependent effects, our ConsistDreamer has introduced a

regularization loss that trades off between consistency and
similarity to original [1] (detailed in Sec. D.8). With this
regularization, our ConsistDreamer could still achieve 3D
consistency while allowing natural view-dependent effects.
The baselines, though are not trained towards consistency
or view-independence, only generate blurred results with-
out notable effects, or even overfit to inconsistent editing
with the view-dependency of NeRF.
Editing Capabilities Constrained by 2D Diffusion Mod-
els. Our ConsistDreamer distills from the diffusion model
[1] to edit scenes. Therefore, the editing ability, style, and
diversity of ConsistDreamer are inherently constrained by
[1]. Our ConsistDreamer edits a scene in a specific man-
ner following [1]. For example, in the “Vincent Van Gogh”
editing in Fig. B.2, our ConsistDreamer, along with IN2N
[4] and ViCA [3] which use the same [1] for editing, shows
a side effect that transfers the style of the image to Van
Gogh’s painting style. Moreover, we cannot support edit-
ing tasks on which the diffusion model cannot perform.
Despite this common constraint among all the distillation-
based methods, our ConsistDreamer successfully transfers
most of the editing capabilities of the 2D diffusion model to
3D, by achieving high-quality and high-diversity 3D scene
editing.
3D Understanding and Reasoning. Though our Consist-
Dreamer is 3D-informed and 3D-aware with the additional
input of 3D positional embedding – already surpassing all
the baselines – it is unable to reason and understand the se-
mantics of each part of 3D scenes. Therefore, while our
ConsistDreamer can edit a view using the knowledge of the
whole scene’s shape (via 3D positional embedding) and ap-
pearance (through the surrounding view), it may still en-
counter multi-face issues or Janus problems. Specifically, it
does not understand what the correct orientation of the face
is, does not know that a person can only have one face, and
thus cannot avoid this problem.
Shape Editing. Some instructions for editing tasks may
involve modifying the geometry or shape of a scene, e.g.,
“give him a beard” creates a beard on the face. Like the
baselines, our ConsistDreamer is designed to support sim-
ple shape editing tasks that can be achieved by slightly and
gradually alternating the surface. For example, in the edit-
ing of “give him a beard,” our pipeline gradually “grows”
the beard’s shape from the face’s surface. Notice that
both ConsistDreamer and the baselines cannot perform ag-
gressive and complicated editing (e.g., removing an object
while reconstructing the whole occluded part), or direction-
related editing (e.g., performing “lower down her arm” for
a scene of a person raising her arm requires a multi-view
consensus on which direction the arm is moved to).
Efficiency. In contrast to the diffusion training-free base-
lines such as [3–5], our ConsistDreamer needs additional
training of a 2D diffusion model. This extends the editing

duration, resulting in taking 12 hours to edit a scene in the
IN2N dataset, and up to 24 hours to edit a large-scale indoor
scene in the ScanNet++ dataset. However, as a trade-off
against efficiency, our ConsistDreamer excels in achieving
high-fidelity editing, surpassing all the training-free base-
lines.

G.3. Future Directions

Supporting Specular Effects. One direction is to support
specular effects and better view-dependency. This may need
an improved formulation of consistency under specular re-
flections, or modeling the ambient environment.
3D Understanding for Scene Editing. Another direction
is to enable the diffusion model to understand and reason
the semantics of a scene. Introducing a model that gener-
ates 3D semantic embeddings for each point in the scene al-
lows for combining this information with the 3D positional
embedding as the input to the diffusion model, potentially
mitigating Janus problems.

References
[1] Tim Brooks, Aleksander Holynski, and Alexei A. Efros.

Learning to follow image editing instructions. In CVPR,
2023. 2, 3, 5, 6, 7, 8

[2] Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng
Yang, Yikai Wang, Zhongang Cai, Lei Yang, Huaping Liu,
and Guosheng Lin. GaussianEditor: Swift and controllable
3d editing with gaussian splatting, 2023. 1, 3

[3] Jiahua Dong and Yu-Xiong Wang. ViCA-NeRF: View-
consistency-aware 3D editing of neural radiance fields. In
NeurIPS, 2023. 1, 8

[4] Ayaan Haque, Matthew Tancik, Alexei Efros, Aleksander
Holynski, and Angjoo Kanazawa. Instruct-NeRF2NeRF:
Editing 3D scenes with instructions. In ICCV, 2023. 1, 3,
4, 6, 8

[5] Hiromichi Kamata, Yuiko Sakuma, Akio Hayakawa, Masato
Ishii, and Takuya Narihira. Instruct 3D-to-3D: Text in-
struction guided 3D-to-3D conversion. arXiv preprint
arXiv:2303.15780, 2023. 1, 3, 8

[6] Subin Kim, Kyungmin Lee, June Suk Choi, Jongheon Jeong,
Kihyuk Sohn2, and Jinwoo Shin1. Collaborative score dis-
tillation for consistent visual editing. In NeurIPS, 2023. 1,
2

[7] Juil Koo, Chanho Park, and Minhyuk Sung. Posterior distil-
lation sampling, 2023. 1, 3

[8] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa,
Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler,
Ming-Yu Liu, and Tsung-Yi Lin. Magic3D: High-resolution
text-to-3D content creation. In CVPR, 2023. 7

[9] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In ICML, 2021.
1, 3, 4

[10] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 3

[11] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In CVPR, 2023. 2, 3

[12] Liangchen Song, Liangliang Cao, Jiatao Gu, Yifan
Jiang, Junsong Yuan, and Hao Tang. Efficient-
NeRF2NeRF: Streamlining text-driven 3d editing with mul-
tiview correspondence-enhanced diffusion models, 2023. 1,
3

[13] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li,
Brent Yi, Justin Kerr, Terrance Wang, Alexander Kristof-
fersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David
McAllister, and Angjoo Kanazawa. Nerfstudio: A modular
framework for neural radiance field development. In SIG-
GRAPH, 2023. 3

[14] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan
Li, Hang Su, and Jun Zhu. ProlificDreamer: High-fidelity
and diverse text-to-3D generation with variational score dis-
tillation. In NeurIPS, 2023. 7

[15] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner,
and Angela Dai. ScanNet++: A high-fidelity dataset of 3D
indoor scenes. In ICCV, 2023. 3, 5

[16] Lu Yu, Wei Xiang, and Kang Han. Edit-DiffNeRF: Editing
3D neural radiance fields using 2D diffusion model. arXiv
preprint arXiv:2306.09551, 2023. 1, 2

[17] Joseph Zhu and Peiye Zhuang. HiFA: High-fidelity text-
to-3D with advanced diffusion guidance. arXiv preprint
arXiv:2305.18766, 2023. 4

[18] Jingyu Zhuang, Chen Wang, Lingjie Liu, Liang Lin, and
Guanbin Li. DreamEditor: Text-driven 3D scene editing
with neural fields. In SIGGRAPH Asia, 2023. 1, 2

