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1. Social Impact and Ethical Considerations
This paper contributes to the advancement of Face IQA
technology, which has widespread applications in digital
media and social networking platforms. By ensuring a bal-
anced representation of gender and skin tones in the dataset,
this paper addresses critical issues of fairness and bias in AI,
promoting more equitable facial analysis technologies.

However, if the facial image quality assessment (IQA)
method fails, it could lead to the selection of incorrect fa-
cial quality images for training, subsequently affecting the
accuracy of facial-related algorithms trained on these im-
ages. This situation might result in biases or errors in facial
recognition, emotion analysis, or other applications based
on facial images.

To address this issue, an effective approach is to double-
check the images filtered through the Face IQA method
to ensure their quality meets the expected standards. This
can be achieved through manual review or by employ-
ing additional verification mechanisms. Such a double-
checking mechanism helps reduce the risk of erroneously
selected images, ensuring the quality of training data,
thereby enhancing the reliability and effectiveness of algo-
rithms trained on these data.

2. Comprehensive Generic Face IQA Dataset
2.1. Data Collection

To create a diverse and comprehensive dataset, we initially
collected face images from the CelebA dataset. We utilized
skin tone [2] and gender [1] detectors to analyze these im-
ages, ensuring a balanced representation of both gender and
skin tones. This careful sampling approach was comple-
mented by the addition of 1,028 images from Flickr, specif-
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ically chosen to enhance the diversity in terms of skin tones
and occlusion. The combined dataset consists of about
40,000 images. Each image was aligned using Dlib’s face
landmark detection [11, 12, 15] according to FFHQ dataset
[10] and subsequently rescaled to a uniform resolution of
512× 512 pixels, ensuring consistency across the dataset.

2.2. Annotation Procedure

To ensure accurate and consistent subjective quality assess-
ment of facial images, we provided annotators with a user-
friendly and intuitive interface. This interface was designed
to display one facial image at a time, accompanied by an
input field for annotators to enter their Mean Opinion Score
(MOS) for the image. To assist annotators in making accu-
rate judgments, we included example images for each qual-
ity level alongside the interface. These examples served as
references, aiding annotators in better discerning and as-
sessing the quality of each image. Additionally, our system
supports arbitrary zoom-in and out features for each image,
allowing annotators to better assess the details. An illus-
tration of the user interface used in our study is shown in
Figure 1.

For the subjective scoring process, we adopted the stan-
dard 5-interval Absolute Category Rating (ACR) scale,
comprising levels: Bad, Poor, Fair, Good, and Excellent.
This scale was linearly mapped to a range of [0, 1.0], corre-
sponding to the ACR scale as follows: Bad at 0-20%, Poor
at 20-40%, Fair at 40-60%, Good at 60-80%, and Excellent
at 80-100%.

To elevate the precision and uniformity of the evalua-
tions, we crafted detailed guidelines alongside a collection
of definitive gold-standard principles. These encompassed
several facets of image analysis, such as the visibility of
eyelashes, articulated through specific classification tiers:

• Excellent: No visible artifacts, whether viewed as
thumbnails or in original size.

• Good: Artifacts discernible solely at original size.
• Fair: Minor artifacts noticeable in thumbnail views.
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Figure 1. User Interface of the Subjective Generic Face IQA Study. Participants assess each image’s visual quality by entering the
scores in a toolbox.

Figure 2. Examples of occluded images in CGFIQA-40K
dataset.

Reference images from the GFIQA-20k dataset were instru-
mental in guiding the annotators.

Additionally, our guidance provides a structure for us-
ing midpoint scores when an image does not clearly fit into
a single category. For instance, if an image falls between

the “Poor” and “Fair” categories, a midpoint score of 40 is
recommended.

We curated a collection of 35 images carefully selected
by experts, where each of the five quality intervals is repre-
sented by seven images. Three images from each level were
used as golden samples, which were provided to guide each
annotator along with the rating guidelines. Additionally, we
conducted a pre-annotation training using the remaining 20
images, with four images from each quality level (It is un-
known to the annotators that they were evenly distributed).
Annotators were required to achieve an accuracy of at least
80% in this test to complete their training. To clarify, an
annotator’s assessment was considered correct if their as-
signed Mean Opinion Score (MOS) was within a margin
of ±15 points from the ground truth MOS score. If this
criterion was not met, they were asked to revisit the guide-
lines and 15 example images and then retake the test until
they reached the accuracy threshold. Importantly, annota-
tors were not informed of the correct answers to the test
questions throughout the process.

In total, we engaged 20 annotators for this study. On
average, each annotator spent approximately 30 seconds as-
sessing the quality of each image. This arrangement en-
sured both the ratings’ efficiency, quality, and consistency.
These detailed guidelines and scoring mechanisms ensured



that participants could accurately and consistently assess
image quality, thereby enhancing our dataset’s overall qual-
ity and reliability.

2.3. Dataset Overview

In this section, we delve into the CGFIQA-40k dataset,
which is comprised of 40,000 face images, each meticu-
lously annotated with a Mean Opinion Score (MOS). This
dataset represents a comprehensive collection, covering a
broad spectrum of image quality with MOS values ranging
from 0 to 1.

The CGFIQA-40k dataset is specifically curated to fo-
cus on facial images, showcasing various visual qualities,
including several images with occlusions. As illustrated in
Figure 2, these occluded images are integral to the dataset,
contributing to its diversity and providing edge cases for
robust model training. We have included image samples
from different categories - Excellent, Good, Fair, Poor, and
Bad to demonstrate the overall diversity. From each cate-
gory, as shown in Figure 3, six images have been carefully
selected to represent the range of qualities within that cat-
egory. These images and their respective MOS values are
displayed in the accompanying figures, illustrating the per-
ceptual quality differences across categories.

Furthermore, we present a histogram of the MOS dis-
tribution in Figure 4 for the entire dataset. This histogram
provides a clear overview of the quality distribution of the
images, highlighting the frequency and range of different
quality levels within the dataset.

3. Implementation Details

3.1. Evaluation Criteria

In our evaluation, we use two well-established metrics to
assess the performance of our model: Spearman’s Rank-
Order Correlation Coefficient (SRCC) and Pearson’s Linear
Correlation Coefficient (PLCC).

PLCC measures the linear correlation between actual
and predicted quality scores, indicating how closely the pre-
dictions align with real values on a linear scale. It is sensi-
tive to numerical differences between scores.

SRCC, in contrast, evaluates the monotonic relationship
between two datasets. It focuses on rank order rather than
numerical values, offering robustness against outliers and
skewed distributions. Both metrics range from -1 to 1,
where 1 signifies perfect correlation, -1 indicates perfect in-
verse correlation, and 0 means no linear correlation. Higher
absolute values indicate better performance, with positive
values showing consistency with the ground truth.

For the PLCC, given si and ŝi as the actual and predicted
quality scores for the i-th image, and µsi and µŝi as their
means, with N as the number of test images, it is defined

as:

PLCC =

∑N
i=1(si − µsi)(ŝi − µŝi)√∑N

i=1(si − µsi)
2

√∑N
i=1(ŝi − µŝi)

2

, (1)

For SRCC, where di is the rank difference of the i-th test
image in the ground truth and predicted scores, it is given
by:

SRCC = 1−
6
∑N

i=1 d
2
i

N(N2 − 1)
, (2)

Both PLCC and SRCC provide insights into the model’s
performance, with higher values indicating better accuracy
and consistency with the ground truth.

3.2. Training Details

Degradation Encoder. The Degradation Encoder is tai-
lored to extract and encode degradation features inherent
in the input face images. Our architecture employs a CNN
comprising six 3 × 3 convolution blocks. Each block in-
corporates batch normalization and is succeeded by a leaky
ReLU activation. After feature extraction, these features
are processed through a two-layer MLP to produce the final
degradation representation vector. We use the Adam opti-
mizer with a learning rate of 3 × 10−5 across 300 epochs
for training. Our training data is divided into two distinct
sets. The first set, labeled as Set S, consists of m im-
ages, as mentioned in Section 3.2 of the main paper. These
are derived from 5000 high-quality images from the FFHQ
dataset [10], resized to 512 × 512. The images in this
set are subjected to 15 different synthesized degradations,
while one image remains undegraded, resulting in a total of
16 images (i.e., m = 16). The synthesized degradations
encompass a variety of conditions such as low-light, high-
light, blur, defocus, 2x downsample, Gaussian noise, Gaus-
sian blur with kernel sizes from 3 to 31, JPEG compression
quality ranging from 1 to 30, motion blur, sun flare, ISO
noise, shadow, and zoom blur. The low-light and high-light
degradations are implemented using the torchvision library,
whereas the other degradations are applied using albumen-
tations [3]. The second set, designated as Set R, includes
n images, amounting to 256 as specified in Section 3.2.2 of
the main paper. This set is dynamically curated by select-
ing from the GFIQA-20k dataset, ensuring that each subset
of 256 images contains at least one high-quality face image
with a Mean Opinion Score (MOS) greater than 0.9. The
temperature parameter θ is 1.0. Notably, both sets undergo
resampling in each iteration to ensure a diverse training ex-
perience. This module comprises a total of 1.27 × 106 pa-
rameters. The training process was conducted on a single
NVIDIA A100 GPU, equipped with 80GB of memory, us-
ing the PyTorch framework. The entire training was com-
pleted in roughly 12 hours.
Landmark Detection Network. We used a commercial
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Figure 3. Sampled face images from the CGFIQA-40k dataset. These images showcase the diversity of visual quality across five
categories: Excellent ((0.8,1]), Good ((0.6,0.8]), Fair ((0.4,0.6]), Poor ((0.2,0.4]), and Bad ([0,0.2]). Each category is represented by six
randomly selected images, annotated with their corresponding Mean Opinion Scores (MOS).

implementation of [5] which outputs 1313 landmarks by
fitting the 3DMM model [7] on the initially detected 68
landmarks. We have observed that the original face land-
mark detection algorithm does not perform well on low-
quality images. However, when fine-tuned specifically for
low-quality images, it significantly improves performance,
as shown in Figure 5. These low-quality images are syn-
thesized based on the image degradation model [9] on the
current landmark detection dataset.

GFIQA Network. The GFIQA Network, informed by the

features extracted by the Degradation Encoder, endeavors
to predict the Mean Opinion Score (MOS) for input face
images. Our network architecture combines a hybrid CNN-
Transformer backbone, comprising a VGG-19 model pre-
trained on ImageNet [13], and a Vision Transformer (ViT)
backbone [6], also pre-trained on ImageNet. This setup is
further enhanced with two Swin Transformer blocks [14], a
channel attention layer [8], a transformer decoder, and two
MLP regression layers. The ViT backbone, tailored for an
input size of 384 × 384, processes the image by dividing it
into multiple 16 × 16 pixel patches, ensuring detailed and
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Figure 4. Distribution of the CGFIQA-40K dataset in terms of
MOS scores.

comprehensive image analysis. During training, we employ
a batch size of 16, and all input images undergo random
cropping from 512 × 512 to 384 × 384. Additionally, data
augmentation in the form of random horizontal flipping is
applied to enhance the model’s generalization capability.
The learning rate is set at 10−5 across 100 epochs, and we
use the Adam optimizer. The ϵ in Lchar is 10−3. The mod-
ule consists of 2.51× 108 parameters in total. The network
was trained on an Nvidia A100 GPU, which has 80GB of
memory, using the PyTorch framework. The entire training
process was completed within 20 hours.

Clarification. To clarify, in our system, both the degra-
dation extraction network and the landmark detection net-
work process the entire image (512× 512 pixels) to predict
landmarks and extract degradation representations. How-
ever, for the GFIQA network, we adapt to the input size
requirements of the pre-trained Vision Transformer (ViT),
which is 384 × 384 pixels in our implementation. To ac-
commodate this, we crop the facial image into several over-
lapping 384 × 384 patches, each serving as an individual
input for the ViT. This ensures that the total coverage area
of all patches encompasses the original input image.

In the main paper, particularly in Fig. 2, we simplified
the explanation by omitting the step of cropping the facial
image into multiple patches. Moreover, the images outlined
in red in the GFIQA Network section are intended to illus-
trate how the ViT divides the input image (384 × 384) into
several patches for feature extraction between patches.
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Figure 5. Evaluating the Impact of Fine-Tuning on Landmark
Detection in Poor-Quality Images. The fine-tuned landmark de-
tection algorithm can handle low-quality inputs (first column), as
demonstrated in the third column of results. In contrast, the unfine-
tuned algorithm has large errors, as evidenced in the second col-
umn (highlighted by the red crosses). The detected landmarks
have been overlaid on the high-quality version of the input for
better visualization. The basic 68 landmarks are represented by
green dots, while the expanded set of 1313 landmarks is denoted
by small red dots.

4. More Experimental Results

4.1. Cross-Dataset Validation

To explore the quality attributes of facial data, we conducted
an experiment using our newly proposed CGFIQA-40k
dataset and the existing GFIQA-20k [16] dataset to train
models. In this experiment, we employed the StyleGAN-
IQA model [16] and our method for training. The effec-
tiveness of these models was then verified on the PIQ23
dataset [4], a benchmark for unseen face image quality as-
sessment.

As shown in Table 1, we observed that models trained on



Dataset/Model PLCC SRCC
GFIQA-20k/StyleGAN-IQA 0.3323 0.3421

CGFIQA-40k/StyleGAN-IQA 0.3541 0.3643
GFIQA-20k/Ours 0.3947 0.4165

CGFIQA-40k/Ours 0.4229 0.4653

Table 1. Performance Comparison of Zero-shot GFIQA on
PIQ23 [4] Dataset. This table compares the effectiveness of mod-
els trained on CGFIQA-40k and GFIQA-20k datasets. The results
highlight the superior performance of models using CGFIQA-40k,
underscoring its larger scale and balanced diversity in gender and
skin tones.

Strategy Naive Patch-based DSL
mAP 39.21 52.30 72.1

Table 2. Comparative degradation retrieval accuracy using
DSL, patch-based, naive methods under real-world degrada-
tions, quantified by mAP scores.

our datasets, particularly the CGFIQA-40k, demonstrated
superior performance on the PIQ23 dataset1, an unseen face
image quality dataset. This enhanced performance can be
attributed to several key factors. Firstly, the CGFIQA-40k
dataset is extensive in scale, encompassing a wide range of
image qualities and scenarios. Secondly, and crucially, it
offers a more balanced representation in terms of gender
and skin tone compared to the GFIQA-20k dataset. This
balanced representation ensures a more comprehensive and
unbiased training process, leading to models that are better
equipped to handle a diverse array of facial images in real-
world applications. The results clearly highlight the advan-
tages of our dataset, underscoring its potential in advancing
the field of facial image quality assessment.

4.2. More Ablation Studies

Effectiveness of DSL. In our experiments, we compared
two approaches to validate the effectiveness of our dual-set
design in contrastive learning. The first approach, which we
refer to as the “Naive method”, involves training a model
exclusively on the synthetic set (Set S). In this method,
positive pairs are formed from images with identical syn-
thetic degradations, while negative pairs are composed of
images with different degradations. This approach, how-
ever, showed limitations in generalizing to real-world im-
ages due to its sole reliance on synthetic degradations.

In contrast, our dual-set model integrates both synthetic
(Set S) and real-world (Set R) degradations. This model is
trained to recognize and adapt to a broader range of degra-
dation patterns, encompassing both controlled synthetic and
naturally occurring real-world degradations. As a result, it
demonstrated superior generalization capabilities, particu-

1We test on device-exposure subset in PIQ23 dataset.

GFIQA-20k w/o CA w CA
PLCC/SRCC 0.9738/0.9733 0.9745/0.9740

Table 3. Impact of Channel Attention on Model Performance.

PLCC/SRCC StyleGAN-IQA MANIQA DSL-FIQA w/o landmark DSL-FIQA
GFIQA-20k 0.9673/0.9684 0.9614/0.9604 0.9725/0.9720 0.9745/0.9740

CGFIQA-40k 0.9822/0.9821 0.9805/0.9809 0.9855/0.9852 0.9873/0.9880

Table 4. Impact of Landmark Guidance on Model Perfor-
mance.

larly in diverse real-world scenarios. The comparative per-
formance of these two approaches is detailed in Table 2,
highlighting the significant advantage of our dual-set ap-
proach in achieving more effective generalization in extract-
ing degradation representation.
Effectiveness of Channel Attention. By integrating a
channel attention block, our method achieves a more pre-
cise feature focus, enhancing face quality assessment. This
improvement leverages the well-documented advantages of
attention mechanisms within the domain of image analysis,
effectively emphasizing crucial channels. The comparative
results, demonstrating the impact of incorporating channel
attention into our approach, are detailed in Table 3.
Effectiveness of Landmark Guidance. We examine the
impact of landmark guidance by conducting an experiment
in which we omit the landmark detection component from
DSL-FIQA. We then assess the performance on the GFIQA-
20k [16] and CGFIQA-40k datasets, with the results de-
tailed in Table 4. This evaluation demonstrates that incor-
porating landmark guidance improves the effectiveness of
our method.

5. Discussion
In our Dual-Set Contrastive Learning (DSL) framework, we
utilize the real-world image set (R) to establish soft prox-
imity mapping through the synthetic image set (S). Theo-
retically, it is possible for two or more images in set R to
have identical degradation representations.

However, it is important to note that the likelihood of this
occurrence is extremely low due to the complex and vari-
able nature of image degradation in real-world scenarios.
In practice, even degradations that appear visually similar
can have distinct characteristics influenced by various fac-
tors such as environmental conditions, lighting, and camera
settings. Therefore, while the theoretical possibility of iden-
tical degradation representations in two images exists, it is
practically negligible.

Additionally, we examine the t-SNE results presented in
Figure 4 of the main paper. Initially, we observe that Gaus-
sian noise, which is random and impacts the entire image,
fundamentally contrasts with blurs and compressions that



specifically affect image structure. This distinction likely
causes Gaussian noise to appear separate from other degra-
dations in t-SNE visualizations. Furthermore, JPEG com-
pression and low resolution both lead to a loss of image
detail, with the former eliminating high-frequency informa-
tion and the latter decreasing the pixel count. This common-
ality in their impact on image clarity might result in similar
patterns within the t-SNE visualizations.
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