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Figure 8. Detailed network structures for the encoder and decoder. Numbers within each feature map (e.g. (3,128)) denote the input and
output channels. Numbers below each feature map (e.g. 256x256) denotes the size of the tensor.

6. Implementation Details

The network structures and all hyper-parameter settings are
identical for both the Places model and the CelebA-HQ
model. Our training pipeline is divided into three separate
stages: the training of the encoder, the transformer, and the
decoder. The free-form random masks [23] are used during
the training of the encoder and the decoder. For the pre-
trained VQGAN model, we use a quantization of N = 1024
tokens, each with a 256-channel embedding. All models
are trained on 3 NVidia V100 GPUs with a batch size of 8.
The Places model is trained for 20 epochs, and the CelebA-
HQ model is trained for 200 epochs. The inference time of
our model is around 0.4 seconds for an image on a single
NVidia V100 GPU regardless of the mask size.

Figure 8 shows the detailed network structure designs
for the encoders and decoder used in our method. Given
input channel cin and output channel cout, “ResBlk” is a
resnet block composed of two convolution layers and a skip
connection. The two convolutions have weight matrices
W1 ∈ R3×3×cin×cout and W2 ∈ R3×3×cout×cout respec-
tively. Layer normalization is applied before and after the
first convolution. The restrictive encoder and partial en-
coder described in the method part (Section 3) replace all
convolutions with the restrictive convolution and the parti-

cal convolution respectively. In addition, self-attention lay-
ers (denoted by “Self-Att” in the figure) are added to pro-
cess the features at 32x32 and 16x16 resolution.

The transformer model described in Section 3.2 is de-
signed based on the minGPT transformer model*, with to-
ken embedding and positional embedding of 1408 channel
and 40 layers of 16-head attention layers. During training,
we have applied attention dropout and embedding dropout
both with a 10% probabilities.

7. Detailed Loss Function

The loss functions used in training the decoder network
described in Section 3.3 involve an adversarial loss func-
tion [12]:

LG = −Ex̂[log(D(x̂)], (10)
LD = −Ex[log(D(x)]− Ex̂[log(1−D(x̂)], (11)

where x and x̂ are a pair of real and fake samples, G, D
are the generator and the discriminator. We additional use
the R1 regularization [30] of the form:

*see https://github.com/karpathy/minGPT



R1 = Ex∥▽D(x)∥. (12)

The LPIPS reconstruction loss function [47] is formu-
lated as

LP =
∑
l

1

HlWl

∑
h,w

∥wl ⊙ (ŷlhw − ŷl0hw∥22, (13)

which compute the L2 distance between the layer activa-
tion of a pretrained VGG network [33] at each layer l.

8. Additional Visual Results
Please refer to Figure 9, 10, 11, 12 for additional visual
comparisons to the baseline methods on both the Places [50]
and the CelebA-HQ [18] dataset.

9. Further ablation analysis
Ablation study on the sampling function. Figure 13 pro-
vides more visual examples that compare between inpaint-
ing results under different sampling temperature t and an-
nealing factor s (described in Section 3.2). As suggested by
the examples, lower temperature in the sampling function
leads to less diverse results and homogeneous textures in the
synthesized areas (particular in natural scene inpainting).
Higher temperature, on the other hand, leads to more di-
verse results at the expanse of visual coherence. The bottom
three rows of Figure 13 best illustrates this phenomenon:
the small mustache region left in the original masked image
should naturally encourage the inpainting algorithm to syn-
thesize a male face. However, since setting a higher temper-
ature encourages the sampler to sample random latent codes
in the early steps, female faces are synthesized regardless of
the present evidence.

Ablation study on the restrictive encoder. We further
study the effectiveness of the restrictive encoder by com-
paring it to a miracle encoder that has access to the original
complete image. Specifically, while our restrictive encoder
takes as input the masked image and produces latent code by
z0 = E(MX), the miracle encoder encodes the complete
image as input and masks the latent codes with a down-
sampled mask, with z1 = M̂E(X). Figure 14 provides a
visual comparison between the two encoders. For the spe-
cific example in the figure, z0 and z1 only share 24.8% of
the encoded latent codes, as the miracle encoder manages
to encode the image differently with access to the complete
image. The quality of the inpainting results, however, show
little difference, although the restrictive encoder has to infer
latent codes with far less information. Quantitative evalua-
tion in Table 3 provides a comparison between the perfor-
mance of the restrictive encoder and the miracle encoder
when used in the full inpainting pipeline, where we found

Methods
Places (256× 256)
FID↓ Diversity↑

Small Mask Large Mask Box
Restrictive 1.02 2.82 0.29±0.06
Miracle 0.93 2.71 0.29±0.06

Table 3. Comparisons of FID and diversity scores between the
restrictive encoder and the miracle encoder.

that the designed restrictive encoder can be nearly as effec-
tive as one that has full access to the complete images. This
indicates that meaningful inductive bias has been learnt by
the encoder in the training process.

10. Time and Memory Complexity
Our model takes 314ms to generate an 256× 256 inpainted
image, with 25ms on encoding, 61ms on decoding and
228ms on predicting tokens, which is similar to the speed
of the generative-transformer-based method MaskGIT [4]
(298ms), but slower than the one-pass inpainting methods
such as LaMa [34] (86ms) and MAT [22] (83ms). Inference
with our model takes 5893Mb of GPU memory to process
a single image.
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Figure 9. Further visual examples of inpaining under the large mask setting, compared to the baseline methods.
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Figure 10. Further visual examples of pluralistic inpainting on the Places Dataset [50], compared to the baseline methods.
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Figure 11. Further visual examples of pluralistic inpainting on the Places Dataset [50], compared to the baseline methods.
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Figure 12. Further visual examples of pluralistic inpainting on the CelebA-HQ Dataset [18], compared to the baseline methods.
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Figure 13. Further visual examples of pluralistic inpainting with respect to different sampling temperature t and annealing factor s.
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Figure 14. Visual comparison between inpainting with the restrictive encoder and a miracle encoder.


