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In the supplementary material, we provide more details
about our implementation details of medical image segmen-
tation tasks (Section A) and natural classification image task
(Section B), and additional experiments of medical image
segmentation tasks (Section C) and natural image classifi-
cation task (Section D).

A. Other Implementation Details of Medical
Image Segmentation Tasks

GPU device. We conducted all experiments on a sin-
gle RTX-2080Ti GPU for two medical image segmentation
benchmark tasks.

Training the source model for the OD/OC segmentation
task. We utilized the SGD optimizer with a momentum of
0.99 and a weight decay of 0.0005, and the initial learning
rate lr0 was set to 0.001 and decayed according to lrt =
lr0 × (1 − t/T )0.9, where t is the current epoch and the
maximum epoch T is set to 200. The batch size was set
to 8. Empirically, we chose the model trained after the last
epoch as the testing model.

Training the source model for the polyp segmentation
task. We utilized the publicly released code of PraNet [1] to
train the source model. The Adam algorithm with a learning
rate of 0.0001 was adopted as the optimizer and the maxi-
mum epoch was set to 20. The batch size was set to 16.
Empirically, we chose the model trained after the last epoch
as the testing model.

Implementation details of different test-time adapta-
tion methods. Since these compared methods (i.e.,

†Yong Xia and Yongsheng Pan are the corresponding authors.
https://github.com/DengPingFan/PraNet

TENT-continual [9], CoTTA [10], DLTTA [12], DUA [5],
SAR [7], and DomainAdaptor [13]) are all open-source, we
adopted their source codes to conduct experiments. We set
the batch size to 1 for all experiments following [12].

B. Other Implementation Details of Natural
Image Classification Task

GPU device. We conducted all experiments on a single
RTX-3090 GPU.
Datasets and Evaluation Metrics. PACS [3] dataset is
commonly used in domain generalization and test-time
adaptation, which comprises 9,991 images and 7 classes
that are collected from 4 distinct domains: art, cartoons,
photos, and sketches.
Training the source model. We trained the source model
by empirical risk minimization (ERM) [8] algorithm with
ResNet [2] backbone using the SGD optimizer with a learn-
ing rate of 5e-5. The batch size was set to 32 and the number
of training iteration was set to 5k. We resized all images to
224 × 224 and used data augmentation during training, in-
cluding random cropping, random flipping, color jittering,
and intensity changing.
Implementation details of comparison experiments un-
der the test-time adaptation setup. We compared our
VPTTA with four methods (i.e., BN [6], TENT [9], SHOT-
IM [4], and TSD [11]) under the test-time adaptation setup
following TSD (i.e., given D domains, training on D-1 do-
mains and testing on the left one) and used the publicly re-
leased code of TSD to conduct experiments for all methods.

https://github.com/DequanWang/tent
https://github.com/qinenergy/cotta
https://github.com/med-air/DLTTA
https://github.com/jmiemirza/DUA
https://github.com/mr-eggplant/SAR
https://github.com/koncle/DomainAdaptor
https://github.com/SakurajimaMaiii/TSD
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Figure 1. Visualization of the original images, estimated prompts, and adapted images on the polyp segmentation task. We normalize the
prompts to [0, 1] for better visualization. The DSC of applying the frozen source model on the original and adapted images is displayed
below each image. We also show an example of each source domain on the left side of this diagram. ’Ori’: Abbreviation of ’Original’.

Table 1. Performance of our VPTTA, ’Source Only’ baseline, and six competing methods on the OD/OC segmentation task. The best and
second-best results in each column are highlighted in bold and underline, respectively.

Methods Domain A Domain B Domain C Domain D Domain E Average
DSC DSC DSC DSC DSC DSC ↑

Source Only (ResUNet-34) 64.53 76.06 71.18 52.67 64.87 65.86
TENT-continual (ICLR 2021) [9] 71.50 77.96 72.79 42.97 69.56 66.96

CoTTA (CVPR 2022) [10] 73.71 76.31 72.43 53.04 71.14 69.33
DLTTA (TMI 2022) [12] 74.90 78.73 74.48 50.99 69.25 69.67
DUA (CVPR 2022) [5] 73.06 75.74 70.82 57.04 70.31 69.39
SAR (ICLR 2023) [7] 74.48 77.49 70.78 57.93 73.05 70.75

DomainAdaptor (CVPR 2023) [13] 74.50 76.39 71.81 56.78 70.55 70.01
VPTTA (Ours) 74.24 79.12 74.05 55.84 76.47 71.94

We resized all test images to 224×224 and no data augmen-
tation was used. For all experiments, we set the random
seed to 0. To deploy our VPTTA, we utilized the Adam
optimizer with a learning rate of 0.01. The hyperparame-
ters α (size of prompt), S (size of memory bank), K (size
of support set), and τ (temperature coefficient in warm-up)

are set to 0.02, 64, 4, and 1. The code and the weights of
pre-trained source models will be available.



Table 2. Performance of our VPTTA, ’Source Only’ baseline, and six competing methods on the polyp segmentation task. The best and
second-best results in each column are highlighted in bold and underline, respectively.

Methods Domain A Domain B Domain C Domain D Average
DSC Emax

ϕ Sα DSC Emax
ϕ Sα DSC Emax

ϕ Sα DSC Emax
ϕ Sα DSC ↑ Emax

ϕ ↑ Sα ↑
Source Only (PraNet) 79.90 87.97 84.66 66.33 78.51 76.72 73.89 84.64 81.28 82.95 90.84 88.08 75.77 85.49 82.69

TENT-continual (ICLR 2021) [9] 72.72 82.99 79.19 69.41 80.09 79.10 13.38 36.09 51.23 73.70 83.33 82.72 57.30 70.62 73.06
CoTTA (CVPR 2022) [10] 76.29 85.31 82.51 66.58 76.73 79.11 71.29 83.50 80.12 70.62 79.81 82.56 71.20 81.34 81.07
DLTTA (TMI 2022) [12] 75.52 84.69 81.88 66.66 77.21 79.34 63.75 78.79 75.55 70.79 81.14 83.32 69.18 80.46 80.02
DUA (CVPR 2022) [5] 78.79 87.14 83.93 69.13 80.62 79.03 74.66 84.96 82.07 86.63 93.62 90.06 77.30 86.58 83.77
SAR (ICLR 2023) [7] 76.48 85.89 81.49 66.45 77.35 78.05 71.46 83.23 79.40 70.41 80.11 81.07 71.20 81.65 80.00

DomainAdaptor (CVPR 2023) [13] 77.48 86.31 82.40 70.82 81.76 80.88 71.96 83.06 79.97 76.89 85.89 84.45 74.29 84.26 81.93
VPTTA (Ours) 80.65 88.62 84.78 76.94 87.64 84.10 76.48 86.56 83.04 86.37 93.54 89.87 80.11 89.09 85.45

C. More Experiments of Medical Image Seg-
mentation Tasks

C.1. Visualization of prompts and adapted images
on the polyp segmentation task

We also visualized the prompts and adapted images on the
polyp segmentation task, as shown in Figure 1. We found
that the prompts induce subtle alterations in the appearance
of images, but still yield substantial performance gains,
even on the hard samples which cannot be recognized by
the model (i.e., DSC = 0.00). Similar to the observation
on the OD/OC segmentation task, the prompts of different
target domains produced for the same source model exhibit
high similarity.

C.2. Comparison experiments under mixed distri-
bution shifts

Considering that test data may come arbitrarily in the com-
plex real world, we conducted the experiments under the
mixed distribution shifts, i.e., training the model on a single
source domain and testing it on a mixed domain composed
of the left target domains. We used 2024 as the random seed
to shuffle the data of left target domains for all methods,
and the batch size was set to 1. The results of two medi-
cal segmentation benchmark tasks are displayed in Table 1
and Table 2. In Table 2, we observed similar phenomena
that only DUA and our VPTTA outperform the baseline,
but other methods fail due to the wrong gradients produced
by the confident but terrible predictions. Meanwhile, the
results in Table 1 and Table 2 reveal that our VPTTA still
achieves the best overall performance across all domains on
both two tasks, underscoring its superior applicability and
robustness.

D. More Experiments of Natural Image Classi-
fication Task

We evaluated our VPTTA and four methods with different
batch sizes (BS) on the PACS dataset. The results are shown
in Table 3 and Table 4. We found that other compared meth-
ods, such as TSD, perform well with a large test batch size
(BS=64) but fail with a small test batch size (BS=1), which

Table 3. Performance of our VPTTA, ERM baseline, and four
competing methods on the PACS dataset with ResNet-18 back-
bone. The best and second-best results in each column are high-
lighted in bold and underline, respectively.

ResNet-18 A C P S Average
ERM [8] 78.37 77.05 95.57 65.69 79.17

BS=64

BN (NeurIPS 2020) [6] 81.05 80.63 95.03 72.26 82.24
Tent (ICLR 2021) [9] 81.35 80.89 95.27 73.45 82.74

SHOT-IM (ICML 2020) [4] 82.71 76.75 94.97 67.32 80.44
TSD (CVPR 2023) [11] 87.89 86.90 96.53 71.77 85.77

VPTTA (Ours) 81.15 80.67 96.23 77.40 83.86

BS=1

BN (NeurIPS 2020) [6] 13.09 16.60 11.32 5.17 11.54
Tent (ICLR 2021) [9] 10.06 16.60 11.32 4.07 10.51

SHOT-IM (ICML 2020) [4] 13.77 16.60 11.32 5.83 11.88
TSD (CVPR 2023) [11] 12.99 15.53 11.80 16.75 14.27

VPTTA (Ours) 79.35 77.52 95.63 69.56 80.51

Table 4. Performance of our VPTTA, ERM baseline, and four
competing methods on the PACS dataset with ResNet-50 back-
bone. The best and second-best results in each column are high-
lighted in bold and underline, respectively.

ResNet-50 A C P S Average
ERM [8] 83.35 79.82 96.77 81.85 85.45

BS=64

BN (NeurIPS 2020) [6] 84.96 82.81 96.83 75.46 85.01
Tent (ICLR 2021) [9] 85.45 83.36 96.77 77.30 85.72

SHOT-IM (ICML 2020) [4] 83.30 82.00 93.35 63.99 80.66
TSD (CVPR 2023) [11] 88.87 89.12 97.43 82.13 89.39

VPTTA (Ours) 86.47 83.53 97.37 84.78 88.04

BS=1

BN (NeurIPS 2020) [6] 29.30 16.60 11.32 4.10 15.33
Tent (ICLR 2021) [9] 19.19 16.60 11.32 4.07 12.79

SHOT-IM (ICML 2020) [4] 31.74 16.60 11.32 4.20 15.96
TSD (CVPR 2023) [11] 12.21 14.16 12.57 17.03 13.99

VPTTA (Ours) 84.57 81.66 97.25 82.62 86.52

means they heavily depend on batch size. The results show
that our VPTTA surpasses other compared methods with a
small test batch size and achieves competitive performance
with a large test batch size. It demonstrates that our VPTTA
is suitable to be deployed in scenarios with small batch
sizes.
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