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Supplementary Material

S1. Implementation Details

Training Settings. We adapt UNet-like BSN as our net-
work. We set ka = 9 and kb = 3 for training and infer-
ence, respectively. For the BSN training, we follow settings
of previous work [5]. The input images are cropped into
256×256 patches with a batch size of 8 and augmented with
random flipping and rotation. The network is optimized
with an Adam optimizer with a learning rate of 3 × 10−4

and [β1, β2] of [0.9, 0.999]. The BSN is trained for 400k
iterations, and the learning rate is decreased to zero with
cosine annealing scheduler. For multi teacher distillation,
we sample blind-spots from Ks ∈ {0, 1, 3, 5, 7, 9, 11} for
SIDD dataset, and Ks ∈ {0, 1, 3, 5, 7, 9} for DND dataset
as the noise intensity in the DND dataset is relatively small.
We crop the input images into 128 × 128 patches with a
batch size of 8. We set the initial learning rate to 3 × 10−4

and decrease it to zero with cosine annealing scheduler dur-
ing 100k iterations.

Network Structure. We use a non-blind-spot network
(NBSN) during multi teacher distillation, which don’t use
any shift or rotation operations and remove the final 1 × 1
convolutional layers. Specifically, We show the perfor-
mance of student networks with three different parameters
after distillation in main paper Tab.3. The student A is
a lightweight network consisting of 2 downsampling and
2 upsampling layers, each containing only 1 convolution
layer. The student B is simillar to A, but uses 3 convolution
layers in the downsampling layer and 4 convolution layers
in the upsampling layer. The student C increase both the up-
sampling and downsampling layers to 5, and uses 2 convo-
lution layer and 1 convolution layers in them, respectively.
We can find that even small networks can significantly ben-
efit from multi teacher distillation. In addition, increasing
the number of downsampling layers or convolutional layers
to increase network depth can further improve performance,
with the latter achieving better performance.

Details of Distillation. Our multi-teacher distillation
training process exhibits lower overall complexity com-
pared to training process of AT-BSN. As illustrated in Fig.4
and Sec.3.4, only the meta-teacher (a shifted UNet) needs
to compute four directional features once, then produce 7
offset features with negligible shift operations. These fea-
tures, considered as outputs from potential teachers with
different blind spots, undergo final shallow 1× 1 Convs to

Methods
Downsampling Patch-masked Feature-shifted

based conv based based (Ours)

Symmetric 33.40 35.64 36.35 (ka/b = 9/9)
Asymmetric 34.86 37.32 36.80 (ka/b = 9/3)

Table S1. Comparison between symmetric and asymmetric de-
signs on SIDD validation dataset.
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Figure S1. Qualitative comparisons of Neighbor2Neighbor and
Blind2Unblind on SIDD validation dataset.

yield 7 distillation labels. Thus the total distillation cost
is 4*MACshifted unet+7*MAC1×1+MAClight unet, not
4*7*(MACshifted unet+MAC1×1)+MAClight unet. All
experiments were done on a RTX 3080. Following
the distillation settings above (batch size=8, patch=128,
total iterations=100k), the distillation finished in around
2.5 hours with speed of 11.1 iters/s and 2.4G GPU memory.
In contrast, the Shifted UNet, with the same settings, re-
quires around 3.2 hours to finish 100k iterations with speed
of 8.3 iters/s and 5.7G GPU memory. Notably, during distil-
lation, no gradient computation is needed for meta-teacher,
and features in four directions are unnecessary for student.
Furthermore, in practice, we can speed up the distillation
process by loading part of the weights from the trained BSN
to initialize the student C as they are almost identical, except
for the absence of the last 1× 1 convolutions and the differ-
ence in the output channel on the last upsampling layer. It
should be noted that the shift and rotation operations within
BSN only affect the feature maps and do not impact the ap-
plication of BSN weights to NBSN.

S2. Importance of Asymmetric Design

Fig.7 compares symmetric and asymmetric BSN, where
asymmetric BSN turns to symmetric one with consistent k
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Figure S2. Fusion results of teachers.

in training and inference. Optimal asymmetric BSN per-
formance requires careful use of k. Tab.S1 contrasts three
asymmetric designs in Fig.2 with their symmetric coun-
terparts (results are from AP-BSN, LG-BPN, and Fig.7),
demonstrating the importance of asymmetric design.

S3. Neighbor2Neighbor and Blind2Unblind

Neighbor2Neighbor and Blind2Unblind are two methods
that do not consider the spatial correlation of noise, and in
this section we will demonstrate their performance degra-
dation in real-world noise scenarios.

Neighbor2Neighbor [1] proposes to subsample the noisy
input images to obtain noisy pairs for Noise2Noise-like
training. Blind2Unblind [7] proposes a global-aware mask
mapper and re-visible loss to fully excavate the information
in the blind-spot for Noise2Void-like training. Neverthe-
less, these methods rely on the pixel-wise independent noise
assumption [2, 4], which is not satisfied in real-world sce-
narios. To be specific, the central pixel can be inferred using
the neighboring noisy pixels as clues. We retrain both meth-
ods on the SIDD-Medium sRGB dataset, and report PSNR
values of 25.98 dB and 23.10 dB, respectively. We find that
both methods learn an approximate identity mapping that is
close to the noisy input itself, as illustrated in Fig. S1

S4. Mean Teacher Distillation and Multi
Teacher Distillation

Fig. S2 presents the fusion results of teachers, correspond-
ing to 2-4 columns in Tab.2. One can find gradually im-
proved visual effects as more teachers are fused. Moreover,
from Fig. S3, we can find that result of mean teacher distil-
lation is smoother. Although both mean teacher distillation
and multi teacher distillation tend to learn the average im-
age, but we consider all teachers to contribute equally, and
the mean teacher cannot capture all the details of teacher
distribution, especially when there are significant differ-
ences between teachers (e.g. kb = 1 and kb = 11). On the
contrary, we utilize multi teacher distillation to learn dif-
ferent knowledge equally from multiple teacher networks,
thereby further improving performance. We avoid explicit
region partitioning in distillation loss of [5], ensuring our
method not affected by the unstable induction bias of such
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Figure S3. Qualitative comparisons of mean teacher distillation
and multi teacher distillation.

process, that is, the partitioning heavily relies on initial re-
sults. To support this, we imitate the partitioning and utilize
outputs of k=9 & k=0 to distill flat and texture area respec-
tively, leading to 37.27 dB, weaker than 37.59 dB with our
multi-teacher approach.

S5. Additional Qualitative Results
S5.1. Different Combinations of Blind-Spots

To investigate the impact of different combinations of blind-
spot sizes k during training and inference, we conduct addi-
tional qualitative experiments. Please note that for the set-
ting of ka = 7, we use early stopping to avoid overfitting.

We select a set of images with rich textures and another
set with relatively flat textures. From Fig. S4, We find that
under various ka, for flat images, the PSNR of the results is
approximately positively correlated with kb. This is because
larger blind-spots during testing can effectively suppress
noise correlation, and the recovery of flat areas is insensitive
to the loss of local information. For images with more tex-
tures, the PSNR of the results is approximately negatively
correlated with kb. This is because larger blind-spots dur-
ing testing will lead to the loss of local spatial information,
making it difficult to recover local texture details.

Interestingly, we also find that when ka is larger during
training, the destructive effect of larger kb on texture in-
formation becomes smaller. This is because the network
trained on larger ka has stronger ability to find clues from
farther places to recover the current pixel, so it can still
maintain a certain degree of texture information at larger
kb.

Visually, the flat area gradually becomes cleaner with
the increase of kb, while the texture area gradually becomes
more blurred with the increase of kb. This once again shows
that different blind-spots have different denoising effects
on flat/texture areas. From the above analysis, we can see
that the removal of noise and the preservation of texture de-
tails is a dilemma. Our multi-teacher distillation can learn
from multiple teacher networks with different blind-spots,
thereby achieving a balance in suppressing noise space cor-
relation and maintaining local textures, that is, achieving a
balance in denoising flat areas and texture areas, thereby
greatly improving performance.



S5.2. More Results on DND and SIDD Datasets

Fig. S5, Fig. S6, Fig. S7 and Fig. S8, Fig. S9, Fig. S10
present qualitative comparisons between our proposed
method and other approaches on the SIDD and DND bench-
mark datasets. We apply models trained on the SIDD
Medium dataset directly to SIDD benchmark to demon-
strate the generalization ability of these methods. For DND
dataset, we utilize models trained directly on it to show the
advantage of the full self-supervised methods.

We observe that our method outperforms other methods
on both benchmark datasets, producing evidently better de-
noising results while preserving more texture details and
less blur. One can find that although AP-BSN(R3) [3] at-
tempts to use R3 [3] to eliminate the aliasing effect, the
aliasing effect cannot be completely eliminated. In addition,
although SDAP(E) [6] performs well in flat areas, it tends
to over-smooth in texture areas, losing many details. Spa-
tiallyAdaptive [5] and LG-BPN [8] can retain more details
because they do not downsample the input image. How-
ever, the restoration of texture details is still not as good as
our method. We also notice that LG-BPN produces cross
artifacts when dealing with larger images in DND datasets
(512 × 512), which we believe is caused by its downsam-
pling operation in the feature domain. It should also be
noted that the large kernel operation and post-processing
operation of LG-BPN make its computational complexity
extremely high, as shown in main paper Tab.4. Our AT-BSN
can produce sharper images, while AT-BSN (D) is slightly
smoother, achieving a balance between noise removal and
texture detail preservation, thus the overall visual effect is
better.
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Figure S4. Qualitative results of different combinations of blind-spots during training (ka) and inference (kb) on SIDD validation dataset.
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Figure S5. Additional qualitative comparisons on SIDD benchmark dataset.
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Figure S6. Additional qualitative comparisons on SIDD benchmark dataset.
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Figure S7. Additional qualitative comparisons on SIDD benchmark dataset.
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Figure S8. Additional qualitative comparisons on DND benchmark dataset.
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Figure S9. Additional qualitative comparisons on DND benchmark dataset.
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Figure S10. Additional qualitative comparisons on DND benchmark dataset.
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