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1. Network Details
1.1. Monocular Network

The structure of our monocular network is presented
in Fig. 1. The monocular network uses a ResNet50 to ex-
tract local features and another convolutional layer to re-
duce the channel size. The resulting features serve as keys
and values, while an average pooling is applied vertically to
form queries. For each query, the attention is applied to the
entire image. For the queries, we use their 1D coordinate to
form a positional encoding, whereas for the keys and values
the positional encoding is mapped from the corresponding
2D image coordinate. Unobservable pixels are masked out
in the attention. Like the multi-view network, the monoc-
ular network outputs a probability distribution of floorplan
depth, evaluated at a set of predefined depth hypotheses. In
the monocular case the distribution is provided directly by
the attention.

Figure 1. Monocular Network. The output channel sizes are
denoted under the respective blocks.

1.2. Multiview Network

Figure 2 provides the detailed architecture of our multiview
network. The feature extractor of the multiview network has
a structure similar to the monocular network. Divergently,
we use the first two blocks of ResNet50 and apply the at-
tention only to the respective image column. The positional

Figure 2. Multi-view feature extractor. The output channel sizes
are denoted under the respective blocks.

Figure 3. Cost Filter. The output channel sizes are provided under
the respective blocks.

encoding for the keys and values is mapped from the cor-
responding vertical coordinate. The attention outputs the
image column features using 64-channels per feature. Af-
terwards, as described in the main paper, the features are
gathered before forming a cost volume. The cost volume
is subsequently filtered by a U-Net-like network, whose de-
tails are provided in Fig. 3.

1.3. Selection Network

The selection employs an MLP with two hidden layers.
It takes the relative poses (x, y and heading) between the
frames of interest (we use 4 frames so 3 relative poses, 9
values in total) and the mean floorplan depth predictions of
the two observation modules as input. It outputs a pair of
weights for the monocular and the multi-view probability
volume. Ablation on the input of the selection network is
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studied in Sec. 7.

Figure 4. Selection Network.

2. Training Details

For the Gibson dataset, we train the monocular and multi-
view network on the entire training split of Gibson(f) for
100 and 20 epochs. For the selection network, we train
another pair of monocular and multiview networks on 80
scenes of the training split before freezing their weights to
train the selection network on the remaining 20 scenes of
Gibson(g) for 5 epochs. We train the selection network on
disjoint scenes to prevent it from being biased by both mod-
ules’ performance on the visited scenes. For Structured3D,
we train the monocular network for 100 epochs. We use
Adam [2] with a learning rate of 1× 10−3 for all training.

3. Implementaion Details

Multi-view network The mapping from source frame to
reference frame corresponds to the following transforma-
tion
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where superscripts src and ref indicate the source and refer-
ence frame. Limited to the horizontal image direction, u de-
notes the pixel coordinate, u∗

0 the principal point and α∗
u the

focal distance. We let d denote the hypothesized depth of
the column feature in the reference frame and Rsr ∈ R2×2

and psr ∈ R2×1 the rotation and translation from the refer-
ence to the source frame. The factor λ indicates a necessary
transformation from homogenous to image coordinates.
Particle filter For the evaluation of the particle filter we
use 5000 particles. A large number of particles is needed to
globally localize the camera pose. For each particle, we ren-
der its feature (floorplan depth) by computing its distance
to the occupancy grids of the floorplan. This operation re-
quires minimal computation, however, increases when the
particle number increases. It is noteworthy that even with
5000 particles, the particle filter does not reach the suc-
cess rates of our histogram filter, while, nevertheless, being
slower than our histogram filtering framework.

4. Dataset Collection

We manually labeled the floorplans and the traversable re-
gion (crucial for observation collections) by careful inspec-
tion of the provided mesh of the Gibson environments.
For Gibson(f) and Gibson(g), we first apply grid sampling
with Gaussian noise in the traversable regions to get di-
verse viewpoints. In order to create a short multi-view
sequence, we sample a local goal position within a small
neighborhood and apply a simple following control to move
the camera toward to local goal. For Gibson(f), the lo-
cal goal position is sampled within a certain front field of
view, while for Gibson(g) it can be everywhere within a
prescribed sample radius. For Gibson(t), we sequentially
sample ten global goal positions and plan the global path
to each goal with a modified version of the Gibson built-in
LazyPRM [1]. Then the camera follows the global path to
reach the target position. Once the current target is reached,
the next goal is sampled based on the coverage of the ex-
isting path. This results in a long trajectory that passes
through almost every traversable region. The datasets are
available through our project page https://felix-
ch.github.io/f3loc-page/.

We sample the camera height from a Gaussian distri-
bution centered at 1.7m with 0.02m standard deviation to
simulate a human holding phone or wearing a headset.
The datasets contain only up-right camera poses with min-
imal roll and pitch disturbances (uniformly in -0.005rad to
0.005rad). Diverse roll and pitch angles are augmented dur-
ing the training. Details about our Virtual roll-pitch aug-
mentation are already provided in the main paper. For the
virtual roll pitch ablation study, we randomly sample the
roll and pitch angle uniformly within a prescribed range,
for instance -0.1rad to 0.1rad.

In Strutured3D, the camera height is centered at 1.5m
and more diverse. The distribution is shown in Fig. 5.
The distribution of the roll and pitch angle is shown in 6
and Fig. 7.

Figure 5. Distribution of camera height in Structured3D.

https://felix-ch.github.io/f3loc-page/
https://felix-ch.github.io/f3loc-page/


Figure 6. Distribution of camera roll angle in Structured3D.

Figure 7. Distribution of camera pitch angle in Structured3D.

5. Additional Qualitative Studies

5.1. Floorplan Depth Estimation

Examples of the monocular floorplan depth estimation are
shown in Fig. 8 Fig. 9 and Fig. 10. Our network can es-
timate accurate floorplan depth and ray-scans (see Fig. 8).
The network does not only perform well, if the room struc-
ture is clear, but is able to handle fully furnished rooms
(see Fig. 9). Typical failure cases are very cluttered scenes
due to a high furnishing level and so caused occlusions, as
shown in Fig. 10. Note, however, that the structure of the
ray-scans retains a reasonable similarity to the ground truth
rays. Overall, the network performs remarkably robust in
furnished rooms.

5.2. Attention

We employ an attention mechanism to help the network es-
timate accurate floorplan depth. We notice that the monoc-
ular network focuses on the room structures and vanish-
ing lines to predict the floorplan depth. This is illustrated
in Fig. 11.

5.3. Observation Likelihood

Figure 12 provides an extended qualitative comparison of
the predicted observation likelihood between ours and the
baselines on both the Gibson dataset and the Structured3D
dataset. As can be observed, our model delivers more ac-

Panoramic Structured 3D

R@ 0.1m 0.5m 1m 1m30◦

LASER 1.1 14.1 25.0 14.7
Ourss 2.8 15.3 19.4 15.8

Table 1. Single frame localization on perspective images
cropped from Panoramic Structured3D.

curate pose predictions and is more consistent in terms of
handling multiple hypotheses.

5.4. Posterior Evolution

Six example trials of the posterior evolution are shown
in Fig. 13 and Fig. 14. In each trial, we see a clear multi-
modality at the beginning, due to insufficient and ambigu-
ous observations. The posterior estimation converges to a
sharp peak as the observer moves around and more obser-
vations are accumulated.

6. Additional Quantitative Results
6.1. Panoramic Structured 3D

Since our targeted application is localization with mobile
devices that capture perspective images. The perspective
Structured3D is the most suitable and straightforward op-
tion. Nevertheless, we present an additional experiment for
LASER and our method on panoramic Structured3D with
90◦FoV (see Tab. 1). Although we see a noticeable gap
on the 1m recall, we outperform LASER on all other three
metrics. We emphasize that R@1m30◦ is a more important
metric for perspective camera localization, since this bet-
ter represents how good the camera frustums match. Our
recall@0.1m is higher than LASER, showing its high accu-
racy. It is worthmentioning, to make the results more sta-
tistically meaningful, we averaged the results of 10 runs,
since we noticed a notable difference on recall (e.g. 2-3%
for 1m) across different trials of testing, as the LASER eval-
uation script randomly crops one perspective image from
each panorama. Hence, we consider the LASER baseline
as properly reproduced.

6.2. LaMAR HGE

Since the data is limited, we only obtained 6 trajectories
with 4 successfully localized (last 10 frames within 1m of
the ground truth), resulting in a success rate of 4/6 at 1m.
The RMSE of the succeeded tracking is 0.26m (last 10
states).

7. Ablation
Shape loss We adopted a cosine similarity based shape loss
in the monocular training (Eq. 11 in the main paper). In



our experience this allows the network to learn more accu-
rate floorplan depth (see Tab. 2). The loss performs best, if
both shape loss and the L1 loss are set roughly to the same
magnitude. Throughout all our training, we use a shape loss
weight λ of 20.

Gibson(f)

R@ 0.1m 0.5m 1m 1m30◦

λ = 0 4.9 27.5 34.2 32.8
λ = 1 5.3 27.3 34.1 32.6
λ = 20 4.7 28.6 36.6 35.1
λ = 100 3.2 23.9 33.6 31.6

Table 2. Shape loss for monocular network training. Using the
proposed shape loss for training the monocular network improves
its recall.

Depth hypotheses are important for the multi-view net-
work. For instance, in the literature, hypothesis are some-
times sampled equidistantly in depth and sometimes in dis-
parity space, which can make a big difference. Accordingly
,the depth hypotheses sampling can be generalized as sam-
pling equidistantly in the space of dα between dαmin and
dαmax, where d is the depth. α = 1 corresponds to ordi-
nary equidistant samples, where as α = −1 corresponds
to sampling equidistantly in the disparity space. We set
dmin = 0.1m, dmax = 15m, a common floorplan depth
range for residential buildings. Using α = 1 leads to a
coarse sampling for short distances whereas using α = −1
provides a rougher sampling of hypotheses between 4m to
8m, which are typical floorplan depth values for residen-
tial buildings. We found that setting α = −0.2 offers a
good compromise. This value delivers fine sampling in near
distances and provides quite dense hypotheses near typical
floorplan depth values. An ablation study on α is in Tab. 3.

Gibson(f)

R@ 0.1m 0.5m 1m 1m30◦

α = 1 12.1 40.5 45.5 43.9
α = −0.2 13.2 40.9 45.2 43.7
α = −1 12.0 40.2 44.8 43.4

Table 3. Depth hypotheses sampling in the multi-view network.
A compromise between equidistant sampling in depth and in dis-
parity space delivers the best recall. More details are given in the
text.

Depth prediction for selection We test a variant of our
selection network, where we do not provide the mean
depth predictions as additional input besides the relative
poses. The performance based on either input is compared
in Tab. 4, where it is shown that the additional input allows

the network to make better selections. This could be be-
cause, for instance, the monocular prediction depends on
how far the camera is from the wall, if it is too close to
the wall, the prediction fails whereas multi-view might still
work.

Gibson(g)

R@ 0.1m 0.5m 1m 1m30◦

with 12.2 39.4 44.5 43.2
without 11.5 38.8 43.8 42.5

Table 4. Mean depth prediction as additional input for the se-
lection network. Using the mean depth as input for the selection
network improves recall performance.

Grid resolution Recall that the feature (virtual ray scan)
extracted from the image is compared to the features on the
grid points of the floorplan. The quality of the predictions
and the computation cost depend on the sampling of the
grids. Finer grid sampling can lead to higher accuracy, but
also to a higher computation cost. An ablation on the grid
resolution is shown in Tab. 5. The grid resolution affects
matching time. However, for usual floorplan sizes of resi-
dential buildings, feature extraction is the dominant factor
in timing. Hence, the total iteration time does not change
significantly in our evaluation.
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Success Rate @ (%) Timing(s)

Grid Resolution 0.2m 0.3m 0.5m 1m Feature Extraction Matching Iteration (HF)

0.1m × 0.1m 62.2 89.2 94.6 94.6 0.033 0.003 0.037
0.2m × 0.2m 10.8 56.8 83.8 94.6 0.032 0.001 0.033

Table 5. Success rate and timing for different grid resolutions. A finer grid sampling leads to more accurate pose estimation. For typical
floorplan sizes feature extraction is the dominant processing step and the timing remains largely unaffected of grid resolution.

Figure 8. Accurate floorplan depth prediction for clear room structure. The ground truth floorplan depth is marked as × and predicted
ones ×.



Figure 9. Floorplan depth prediction handles furnishing and occlusion to a certain extent. The ground truth floorplan depth is marked
as × and predicted ones ×.

Figure 10. Floorplan depth prediction fails due to high furnishing level and occlusion. The ground truth floorplan depth is marked as
× and predicted ones ×.



Figure 11. Attention on the room structure. The attention maps from left to right are the attention map for the 0th, 13th, 26th, and 39th
of the 40 depth values from left to right.



Figure 12. Observation likelihood.



Figure 13. Posterior evolution.



Figure 14. Posterior evolution.
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