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This supplementary material provides more details and
results that are not included in the main paper due to space
limitations. The contents are organized as follows.
• Section A introduces the scaling property of Fourier

Transforms.
• Section B provides additional frequency analysis for di-

lated convolution.
• Section C offers sampling analysis for dilated convolu-

tion.
• Section D describes theoretical analysis of AdaKern.
• Section E presents a more in-depth ablation study.
• Section F includes additional experiment details.
• Section G provides more detailed results of real-time se-

mantic segmentation.
• Section H reports more quantitative results on various

tasks.
• Section I showcases more visualized results.

A. The scaling property of Fourier Transforms
In this section, we analyze how the dilation manipulate the
frequency response of convolution. In the discrete two-
dimensional case, considering a zero-padded normal con-
volution kernel W and its dilated version W′. Increasing
the dilation rate from 1 to D is equivalent to expanding the
convolution kernel through zero-insertion by a factor of D.
We have W′(Dm,Dn) = W(m,n), where D are dilation
rate, i.e., scaling factors in the horizontal and vertical direc-
tions. Before applying the Fourier transform to the convolu-
tion weight to obtain its frequency response, it is a common
practice to use zero-padding, enlarging the small size of the
convolution weight. Notice that the size after zero-padding
is significantly larger than the kernel size [13]. The Fourier
transform of the convolution kernel W(m,n) denoted by
WF (u, v) can be expressed as:

WF (u, v) =
1

MN

M−1∑
m=0

N−1∑
n=0

W(m,n)e−j2π(um+vn)

=
1

MN

M−1∑
m=0

N−1∑
n=0

W′(Dm,Dn)e−j2π(um+vn)

(1)
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Figure 1. Left: ‘D’ is dilation. Higher dilation scales the kernel’s
frequency response curve to lower frequencies, narrowing its ef-
fective bandwidth. Normalized frequency [0, 0.5] is used for sim-
plicity, ×2π yields normalized angular frequency. Right: Recep-
tive field expands with dilation rate, enhancing spatial coverage.
However, higher dilation reduces the kernel’s effective bandwidth,
limiting its ability to capture frequency information.

Where the normalized frequencies in the height and width
dimensions are given by |u| and |v|. After shifting the
low frequency to the center, u takes values from the
set {−M2 ,−

M+1
2 , . . . , M−12 }, and v takes values from

{−N2 ,−
N+1
2 , . . . , N−12 }. To establish the relationship be-

tween WF (u, v) and W′
F (u, v), we introduce two new

variables p = Dm and q = Dn, such that m = 1
Dp and

n = 1
D q. Using these new variables, the Fourier transform

expression can be rewritten as:

WF (u, v) =
1

MN

M−1∑
p=0

N−1∑
q=0

W′(p, q)e−j2π(
u
D p+

v
D q)

= W′
F (

u

D
,
v

D
)

(2)
W′

F is the Fourier transform of the convolution kernel
W′. Thus, the frequency response of the standard kernel
WF (u, v) is scaled to 1

D lower frequency in its dilated ver-
sion W′

F

(
u
D ,

v
D

)
.

We present a representative response curve of the convo-
lution kernel in the left of Figure 1. With dilation increasing
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Figure 2. In the top row, we follow [20, 21] to decompose the image into different spatial frequency band, ranging from high to low fre-
quency. The image is filtered within one-octave-wide (doubling of frequency) spatial frequency bands centered at fcenter ∈ { 14 ,

1
8
, 1
16
, 1
32
}

normalized frequency (i.e., fcenter ∈ {128.0, 64.0, 32.0, 16.0} cycles/image for 256×256 images). We employ one layer of 3 × 3 con-
volution with different dilation to learn to extract four corresponding spatial frequency bands from the image. Frequencies higher than 1

2D

are removed to avoid aliasing artifacts. The red box indicates the lowest Mean Squared Error (MSE) for the corresponding frequency band
among different dilation rates. The corresponding MSE error results are shown in Figure 3. We find that convolutions with higher dilation
rates excel in extracting lower frequencies, while convolutions with lower dilation rates are better at extracting higher frequencies. This
observation also supports our AdaDR, which assigns a small dilation rate for high-frequency areas full of details and a large dilation rate
for low-frequency smooth areas.

from 1 to D, the response curves are scaled to 1
D , reducing

the effective bandwidth to its 1
D . Additionally, the receptive

field of the convolution is positively correlated with dila-
tion. We illustrate the relationship between dilation, band-
width, and receptive field in the right of Figure 1. Our work
is motivated by this observation and aims to balance the

bandwidth and receptive field of dilated convolution.

B. Frequency Analysis for Dilated Convolution

Inspired by spatial-frequency channel analysis [20, 21], we
evaluate convolution with varying dilation rates to learn and
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Figure 3. The Mean Squared Error (MSE) values in (a)-(d) represent the difference between the top-row image decomposed into various
spatial frequency bands in Figure 2 and the corresponding extracted images. The extraction is conducted on the original image using a
single layer of convolution with different dilation rates.
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Figure 4. Intensity increases in color correspond to reduced MSE
errors in the extraction of corresponding frequencies. Convolu-
tions with higher dilation rates tend to excel at extracting lower
frequencies. AdaDR can extract different frequencies from the
original image by adjusting its dilation rate.
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Figure 5. Illustration of dilated convolution. The computation of
dilated convolution can be broken down into several steps [23].
First, crop the corresponding feature map, then, downsample it by
D× (dilation rate), and finally, pixel-wise multiply and sum. Thus,
dilated convolution is actually operated at a sampling rate of 1

D
.

extract distinct frequency components from images.
As shown in Figure 2, in the top row, we follow [20, 21]

to decompose the image into different spatial frequencies,
ranging from high to low frequency. The image is filtered
within one-octave-wide (doubling of frequency) spatial fre-
quency bands centered at fcenter ∈ { 14 ,

1
8 ,

1
16 ,

1
32} normal-

ized frequency. We employ one layer of 3 × 3 convolution
with different dilation to learn to extract four corresponding
spatial frequency bands from the image. Frequencies higher

than 1
2D are removed to avoid aliasing artifacts. The red box

indicates the lowest Mean Squared Error (MSE) for the cor-
responding frequency band among different dilation rates.
The MSE error results are shown in Figure 3. We find that
convolutions with higher dilation rates excel in extracting
lower frequencies, while convolutions with lower dilation
rates are better at extracting higher frequencies.

This observation also supports our AdaDR, which as-
signs a small dilation rate for high-frequency areas full of
details and a large dilation rate for low-frequency smooth
areas. By dynamically adjusting dilation rates spatially vari-
antly, AdaDR demonstrates the capability to extract a broad
spectrum of frequencies, as shown in Figure 4. This high-
lights its effectiveness in capturing diverse frequency infor-
mation.

C. Sampling Analysis for Dilated Convolution

As shown in Figure 5, the computation of dilated convolu-
tion can be broken down into several steps [23]. First, crop
the corresponding feature map, then downsample it by D×
(dilation rate), and finally, pixel-wise multiply and sum.
Thus, dilated convolution is actually operated at a sampling
rate of 1

D .

D. Theoretical Analysis of AdaKern

For a static convolutional kernel, AdaKern decompose its
weights W as follows

W = W̄ + Ŵ. (3)

Here, W̄ = 1
K×K

∑K×K
i=1 Wi represents the kernel-wise

averaged W. It functions as a low-pass K ×K mean filter,
followed by a 1×1 convolution with parameters defined by
W̄. Through Fourier analysis, W̄ is proportional to the
lowest frequency component of 2D DFT. Specifically, the
Fourier transform of static convolution kernel W denoted



(a) Image & Ground truth (b) Dilation map (c) Sampling coordinates

Figure 6. Visualized results for AdaDR. AdaDR learns to spatially adaptively assign dilation rates based on the local feature frequency. We
show the sampling coordinates of convolution with adaptive dilation. For better visualization, we only display the sampling coordinates of
convolution with a low dilation rate (≤ 2) in (c), which mainly distribute along object boundaries.
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Figure 7. Visualized results for FreqSelect. Brighter colors indicate a higher value. FreqSelect selectively suppresses high frequencies
in areas that do not contribute to accurate predictions, such as the background and the center of objects. Notably, FreqSelect exhibits a
tendency to assign a higher attention weight to object boundaries, especially in higher frequency bands. Consequently, features enhanced
by FreqSelect showcase a reduction in high frequencies within the background, resulting in clearer object boundaries.
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Figure 8. Feature and prediction visualization on Cityscape [3].
Aliasing artifacts are evident in (a), leading to the loss of details in
the representation of a thin pole and truck boundary, resulting in
inferior predictions in (c). In contrast, our proposed FADC method
in (b) exhibits an accurate and uniform response to both thin poles
and large trucks, contributing to consistently accurate predictions
in (d).

by WF (u, v) can be expressed as

WF (u, v) =
1

K ×K

K−1∑
m=0

K−1∑
n=0

W(m,n)e−j2π(um+vn),

(4)
We set (u, v) = (0, 0) to obtain the lowest frequency com-
ponent, which is equal to W̄

WF (0, 0) =
1

K ×K

K−1∑
m=0

K−1∑
n=0

W(m,n)e0

= W̄

(5)

The term Ŵ = W − W̄ denotes the residual part, indicat-
ing the frequency components excluding the lowest, cap-

Table 1. Ablation study on ADE20K [29] dataset. We adopt the
widely used ResNet-50 with UPerNet as the segmentation model
and replace the standard convolutional layer (marked as Conv.)
with the proposed FADC, encompassed with three plug-in strate-
gies, i.e., AdaDR, AdaKern, and FreqSelect.

Method AdaDR AdaKern FreqSelect mIoU

Conv. 40.8

FADC X 43.6
FADC X X 43.8
FADC X X 44.1
FADC X X X 44.4

Table 2. Ablation study for AdaDR on the ADE20K dataset [29].

Percentage for training 12.5% 25% 50%

mIoU 43.5 44.4 44.1

Table 3. Ablation study for FreqSelect on the ADE20K
dataset [29]. The phrase “Fixed weight for lowest” indicates set-
ting a fixed selection weight of 1.0 for the lowest frequency band.

Frequency Band Fixed weight for lowest mIoU

2: [0, 14 ), [
1
4 ,

1
2 ] X 44.0

3: [0, 18 ), [
1
8 ,

1
4 ), [

1
4 ,

1
2 ] X 44.2

4: [0, 1
16 ), [0,

1
8 ), [

1
8 ,

1
4 ), [

1
4 ,

1
2 ] X 44.4

5: [0, 1
32 ), [0,

1
16 ), [0,

1
8 ), [

1
8 ,

1
4 ), [

1
4 ,

1
2 ] X 44.1

4: [0, 1
16 ), [0,

1
8 ), [

1
8 ,

1
4 ), [

1
4 ,

1
2 ] 44.0

turing local differences and extracting the high-frequency
components. In this way, AdaKern decomposes the static
convolution kernel into low and high-frequency parts, and
reweights them using dynamic weights λl, λh

W′ = λlW̄ + λhŴ. (6)

E. Ablation study
In this section, we conduct an extensive ablation study
on the ADE20K dataset [29] to evaluate the effective-
ness of our proposed Frequency-Aware Dilated Convolution
(FADC) compared to the standard convolutional layer in the
widely used ResNet-50 [6] architecture with UPerNet [24]
as the segmentation model. We replace the standard con-
volutional layer in the last three stages with the proposed
FADC in the ResNet-50 [6], all models are trained with the
same setting described in Section F.
AdaDR. The ablation study results are summarized in Ta-
ble 1. AdaDR dynamically adjusts dilation rates based on
local feature frequency, enhancing the receptive field size
as well as keep appropriate frequency bandwidth to cap-
ture frequency information. The application of FADC, with



Table 4. Comparison of speed and accuracy on Cityscapes [3]. The models pre-trained by other segmentation datasets are marked with †.

Model Val Test #FPS GPU Resolution #GFLOPs #Params

DF2-Seg1 [10] 75.9 74.8 67.2 GTX 1080Ti 1536x768 - -
DF2-Seg2 [10] 76.9 75.3 56.3 GTX 1080Ti 1536x768 - -

SwiftNetRN-18 [16] 75.5 75.4 39.9 GTX 1080Ti 2048×1024 104.0 11.8M
SwiftNetRN-18 ens [16] - 76.5 18.4 GTX 1080Ti 2048×1024 218.0 24.7M

CABiNet [8] 76.6 75.9 76.5 RTX 2080Ti 2048×1024 12.0 2.64M

BiSeNet(Res18) [27] 74.8 74.7 65.5 GTX 1080Ti 1536×768 55.3 49M
BiSeNetV2-L [26] 75.8 75.3 47.3 GTX 1080Ti 1024×512 118.5 -

STDC1-Seg75 [4] 74.5 75.3 74.8 RTX 3090 1536×768 - -
STDC2-Seg75 [4] 77.0 76.8 58.2 RTX 3090 1536×768 - -

PP-LiteSeg-T2 [17] 76.0 74.9 96.0 RTX 3090 1536×768 - -
PP-LiteSeg-B2 [17] 78.2 77.5 68.2 RTX 3090 1536×768 - -

HyperSeg-M [14] 76.2 75.8 59.1 RTX 3090 1024×512 7.5 10.1
HyperSeg-S [14] 78.2 78.1 45.7 RTX 3090 1536×768 17.0 10.2

SFNet(DF2) [9] - 77.8 87.6 RTX 3090 2048×1024 - 10.53M
SFNet(ResNet-18) [9] - 78.9 30.4 RTX 3090 2048x1024 247.0 12.87M
SFNet(ResNet-18)† [9] - 80.4 30.4 RTX 3090 2048×1024 247.0 12.87M

DDRNet-23-S [7] 77.8 77.4 108.1 RTX 3090 2048×1024 36.3 5.7M
DDRNet-23 [7] 79.5 79.4 51.4 RTX 3090 2048×1024 143.1 20.1M
DDRNet-39 [7] - 80.4 30.8 RTX 3090 2048×1024 281.2 32.3M

PIDNet-S [25] 78.8 78.6 93.2 RTX 3090 2048×1024 47.6 7.6M
PIDNet-M [25] 80.1 80.1 39.8 RTX 3090 2048×1024 197.4 34.4M
PIDNet-L [25] 80.9 80.6 31.1 RTX 3090 2048×1024 275.8 36.9M

PIDNet-M 81.0 80.6 37.7 RTX 3090 2048×1024 198.4 34.6M+FADC (Ours)

AdaDR incorporated alone, demonstrates a noticeable im-
provement, mIoU from 40.8 to 43.6.

For optimizing the spatial variant dilation rate assigned
to coordinate p, we choose to optimize D̂(p) directly. That
is, by increasing the dilation rate at position p where the
high-frequency power HP(p) is low to encourage a large re-
ceptive field, and suppressing the dilation rate where HP(p)
is high to reduce the loss of frequency information. To for-
malize this optimization, we express it as follows

θ = max
θ

 ∑
p∈HP−

D̂(p)−
∑
p∈HP+

D̂(p)

 . (7)

Here, HP+ and HP− represent pixels with the high-
est/lowest high-frequency power, i.e., the brighter/darker
areas in Figure 2(b), respectively. We empirically set the
weight of this optimization target to 0.01 to balance it dur-
ing training with task loss (e.g., pixel-wise cross-entropy for
segmentation). As shown in Table 2, we use 25% pixel with
the highest/lowest high-frequency power for training.
AdaKern. The AdaKern operates on convolution kernel
weights, decomposing them into low-frequency and high-
frequency components. This manipulation optimizes the
frequency response curve, enabling dynamic adjustments
on a per-channel basis. The subsequent inclusion of AdaK-

ern further enhances the performance achieved by AdaDR
alone, resulting in an mIoU of 43.8.

FreqSelect. High frequencies require a lower dilation with
high bandwidth to capture adequately. Considering the
convolution’s inclination to amplify high-frequency com-
ponents, which negatively impacts the average dilation rate
predicted by AdaDR, there is a resultant decrease in re-
ceptive field size. FreqSelect strategically intervenes by
spatially reweighting high frequencies. It selectively sup-
presses high frequencies in areas that do not contribute to
accurate predictions, such as the background and the cen-
ter of objects. This prompts FADC to learn higher dila-
tion rates, thereby enlarging the receptive field. The subse-
quent integration of FreqSelect contributes to a further per-
formance boost, yielding an mIoU of 44.1.

We also conduct an ablation study on the number of fre-
quency bands in FreqSelect. Specifically, we decompose
the frequency in an octave-wise manner [21] into differ-
ent frequency bands. As illustrated in Table 3, we observe
an increase in segmentation accuracy with the number of
frequency bands, from 2 to 4, and achieve the best results
with 4 frequency bands, namely, [0, 1

16 ), [
1
16 ,

1
8 ), [

1
8 ,

1
4 ), and

[ 14 ,
1
2 ]. Additionally, we notice that setting a fixed selection

weight for the lowest frequency band, instead of dynam-
ically predicting the selection weight, leads to better im-



Table 5. Various task results on the COCO dataset.

Task Object Detection Instance Segmentation Panoptic Segmentation
Model Faster RCNN Mask RCNN PanopticFPN

Standard Conv AP : 37.4 AP : 34.7 PQ: 40.7
FADC AP : 40.5 (+3.1) AP : 37.2 (+2.5) PQ: 42.8 (+2.1)

provements. The reason for this is that the lowest frequency
band only requires low effective bandwidth and does not
impact the optimization of the dilation rate of AdaDR. Dy-
namically reweighting the lowest frequency band may result
in a faded response of the object. Thus, we assign a fixed
weight of 1.0 to the lowest frequency band.

Furthermore, the introduction of FreqSelect in conjunc-
tion with AdaDR and AdaKern culminates in the highest
mIoU of 44.4, underscoring the synergistic impact of the
three strategies. This comprehensive analysis establishes
the effectiveness of our proposed FADC, with each con-
stituent strategy playing a pivotal role in enhancing seman-
tic segmentation performance.

F. Experiments Settings

Datasets and Metrics. We evaluate our methods on sev-
eral challenging semantic segmentation datasets, including
Cityscapes [3] and ADE20K [29]. Cityscapes [3] com-
prises 19 semantic categories designed for semantic seg-
mentation tasks, featuring 5,000 finely annotated images
with dimensions of 2048 × 1024 pixels. The training, val-
idation, and test sets consist of 2,975, 500, and 1,525 sam-
ples, respectively. We only utilize the training set for learn-
ing. ADE20K [29] is a challenging dataset encompassing
150 semantic classes, distributed across 20,210, 2,000, and
3,352 images in the training, validation, and test sets.

Additionally, we leverage the COCO [11] dataset to eval-
uate our methods on object detection and instance segmen-
tation tasks. We employ the mean Intersection over Union
(mIoU) for semantic segmentation and Average Precision
(AP) for object detection/instance segmentation as our eval-
uation metrics.
Implement details. For Mask2Former [2], PIDNet [25] on
the Cityscapes [3]. Our training protocols are the same as
the original paper [2, 25]. Specifically, we adopt the poly
strategy to update the learning rate and random cropping,
random horizontal flipping, and random scaling in the range
of [0.5, 2.0] for data augmentation. The number of train-
ing epochs, the initial learning rate, weight decay, cropped
size, batch size, and optimizer for Mask2Former and PID-
Net are [90k, 1e-4, 5e-2, 512×1024, 16, AdamW], [120k,
1e-2, 5e-4, 1024×1024, 12, SGD]. For PSPNet [28] and
DeepLab [1], we adopt the settings of [40K, 1e-2, 5e-4,,
512×1024, 8, SGD] is adopted. On the ADE20K [29]
dataset, we use ResNet [6] with HorNet [18] utilizing the
UperNet [24] framework. HorFPN is employed for Hor-

Net [18]. All models undergo training for 160k iterations
using the AdamW [12] optimizer, with a batch size of 16,
following the same settings as HorNet [18].

On the COCO [11] dataset, we adhere to common prac-
tices [5, 18, 22] and train object detection and instance seg-
mentation models for 12 (1× schedule) or 36 (3× schedule)
epochs.

G. Real-Time Semantic Segmentation
We provide more detailed results in Table 4. Equipped with
FADC, our PIDNet-M achieves a mIoU of 81.0 at a frame
rate of 37.7 frames per second (FPS), surpassing the perfor-
mance of the heavier PIDNet-L while maintaining a faster
speed (37.7 vs. 31.1), thereby establishing a new state-of-
the-art. This demonstrates the efficiency of the proposed
method.

H. More Results on Various Tasks
In Table 5, our FADC method demonstrates consistent im-
provements across multiple computer vision tasks. Specifi-
cally, compared to the baseline models using standard con-
volution, our approach yields notable enhancements in ob-
ject detection, instance segmentation, and panoptic segmen-
tation performance metrics. We observe an increase of +3.1
in box Average Precision (AP), indicating improved accu-
racy in localizing objects within bounding boxes. More-
over, our method achieves a +2.5 improvement in mask
AP, showcasing enhanced precision in delineating object
boundaries. Additionally, there is a noteworthy enhance-
ment of +2.1 in Panoptic Quality (PQ), reflecting improved
overall performance in jointly handling instance and seman-
tic segmentation tasks. These results underscore the effec-
tiveness of our FADC approach in advancing the state-of-
the-art across various visual recognition tasks.

I. More Visualized Results
In this section, we provide a more visual demonstration of
the effectiveness of the proposed method.
Visualization for AdaDR. As shown in Figure 6, AdaDR
learns to spatially adaptively assign dilation rates based on
local feature frequency. We depict the sampling coordinates
of convolution with adaptive dilation. For better visualiza-
tion, we only display the sampling coordinates of convo-
lution with a low dilation rate (≤ 2) in (c), which mainly
distribute along object boundaries. In other words, AdaDR



learns to assign denser sampling coordinates for higher fre-
quency areas, following the Shannon-Nyquist sampling the-
orem [15, 19].

Analysis for FreqSelect. As shown in Figure 7, brighter
colors indicate a higher value. FreqSelect selectively sup-
presses high frequencies in areas that do not contribute to
accurate predictions, such as the background and the cen-
ter of objects. Notably, FreqSelect exhibits a tendency to
assign a higher attention weight to object boundaries, es-
pecially in higher frequency bands. Consequently, features
enhanced by FreqSelect showcase a reduction in high fre-
quencies within the background, resulting in clearer object
boundaries.

Visualized feature and prediction. We present more rep-
resentative visualization results in Figure 8. In Figure 8(a),
dilated convolution is shown to fail in accurately extracting
high-frequency information, such as the fine details of thin
poles depicted in Figure 8(c). In contrast, our FADC ac-
curately captures these details in Figure 8(b), resulting in
superior predictions, as shown in Figure 8(d).

It is evident that dilated convolution struggles to respond
uniformly to large trucks due to an insufficient receptive
field to extract local information. On the other hand, FADC
uniformly responds to large trucks, leading to more consis-
tent and accurate segmentation predictions. These visual-
izations serve to illustrate the effectiveness of our proposed
FADC in addressing the limitations of dilated convolution.
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