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Supplementary Material

1. Implementation Details
1.1. Occupancy Grid Mapping Algorithm

Before updating the probabilistic occupancy grid FG
t , Bre-

senham’s line algorithm is implemented to cast the ray path
in 3D space between the camera viewpoint and the end-
points among the point cloud back-projected from Dt+1.
According to the classical occupancy grid mapping algo-
rithm [11], we have the log-odds formulation of occupancy
probability:

logOdd(vi|zj) = logOdd(vi) + log
p(zj |vi = 1)

p(zj |vi = 0)
, (1)

where vi denotes the occupancy probability of ith voxel in
the grid FG

t , zj is the measurement event that jth camera
ray passes through this voxel. The numerator of the item
log

p(zj |vi=1)
p(zj |vi=0) means that the probability of being passed

for a voxel if this voxel is occupied in fact, which shows the
confidence of ray casting process. Obviously, the numerator
and denominator can be set as an empirical constant. There-
fore, we update the log-odds occupancy probability of each
voxel in the grid FG

t by adding a constant one time when
a single camera ray passes through this voxel. Note that
the probabilistic occupancy grid FG is continually updated
within one episode. Finally, the occupancy status of voxels
can be classified into three categories: unknown, occupied,
and free, by setting a probability threshold.

We use a constant C ′ to represent the value of a ra-
tio | log p(zj |vi=1)

log p(zj |vi=0) | in Eq. (1), where the denominator term
| log p(zj |vi = 0)| is set to 0.01. To demonstrate the robust-
ness and optimality of hyper-parameter in our implementa-
tion, we show the experimental results in Tab. 1.

1.2. Network and Training

Training. In Isaac Gym [7], we set 256 parallel environ-
ments for policy training, where each environment corre-
sponds with one building-level object. Once the coverage
ratio reaches a threshold (99% in practice), a collision hap-
pens or the episode length reaches the maximum threshold
(100 steps), the environment is reset and the building to be
reconstructed is replaced. Our NBV policy is optimized
through over 32 million iterations and uses approximately
24 hours of training time on an NVIDIA V100 GPU. All
networks are randomly initialized and trained end-to-end.
Network. We propose a multi-source representation that
has better generalizability. In particular, we first build two
mid-level representations: a 3D geometric representation

Table 1. Evaluation results for different empirical parameters
in the implementation of occupancy grid mapping algorithm.
Note that we use a constant C′ to represent the value of a ratio
| log p(zj |vi=1)

p(zj |vi=0)
| in Eq. (1)

.
Occupancy Threshold Mean AUC ↑ Final Coverage Ratio ↑ Accuracy ↓

0.5 (Ours) 87.39% 95.63% 0.37

1.0 84.41% 93.43% 0.41

1.5 84.84% 95.20% 0.39

2.5 54.77% 58.70% 0.85

Value of Constant C ′ Mean AUC ↑ Final Coverage Ratio ↑ Accuracy ↓

5 66.96% 71.92% 0.49

10 80.75% 92.16% 0.43

20 (Ours) 87.39% 95.63% 0.37

40 86.97% 94.12% 0.40

FG from depth maps and a semantic representation FS

from RGB images. Geometric representation FG encoded
from depth images is with shape of (N,X, Y, Z, 4), where
the number of parallel training environments N is 256,
grid size (X,Y, Z) is (20, 20, 20) and last dimension rep-
resents the 3D world coordinate and occupancy possibil-
ity. Semantic representation FS is stacked grayscale im-
ages encoded from multi-view RGB images with the shape
of (N,M,H,W ), where the number of RGB images M is
5, the size of grayscale images is (64, 64)

Specifically, we encode mid-level representations to em-
beddings: sSt = fS(FS

t ) and sGt = fG(FG
t ). fS encom-

passes a 2-layer 2D convolution and Linear(Flatten(x))
operation, while fG encompasses a 2-layer 3D convolution
and Linear(Flatten(x)). Subsequently, we combine them
with the historical action embedding sAt = Linear(a1:t) to
generate the final state embedding st, as the input to the
policy network. This process can be formulated as:

st = Linear(sGt ; s
S
t ; s

A
t ), (2)

where all embeddings are 256 vectors.
Our policy network PPO, implemented by Stable Base-

line3 [10], is a 3-layer multi-layer perceptron (MLP). The
output of our policy is used to parameterize a distribution
over our 5-dimension action space. In this way, the action
can be drawn from the stochastic policy a ∼ π(·|ot).

1.3. Baseline Policies

The implementation details of baseline policies are de-
scribed below:
1) Random Policy: This policy randomly generates 5-dim
vector (x, y, z, pitch, yaw) among the action space as the



next action. The randomly generated positions are con-
strained so as not to cause collisions. The reported results
are evaluated on the test set and averaged over random seeds
from 0 to 4.
2) Random Policy on the Sphere: This policy randomly
generates positions (x, y, z) on a pre-defined hemisphere
that exactly covers all objects of the test set. The head-
ings are required to point to the center of the hemisphere.
To avoid collisions, we set the radius of the hemisphere to
9 meters, which is greater than the maximum height of the
test set object. The reported results are evaluated on the test
set and averaged over random seeds from 0 to 4.
3) Uniform Policy on the Sphere: All positions are
evenly distributed on the previously mentioned hemi-
spheres. Specifically, for Houses3K test set, all sampling
points are distributed over 5 heights, each with 6 evenly
spaced positions. For OmniObject3D, all sampling points
are distributed over 4 heights, each with 5 evenly spaced
positions.
4) Uncertainty-Guided [4]: This NBV policy iteratively
selects the next view from a pre-defined viewpoint set based
on the entropy-based uncertainty based on a continually op-
timized neural radiance field. We use TensoRF [1] as the
implementation foundation of neural radiance field. Be-
fore implementing uncertainty-driven viewpoint selection,
we uniformly sample 100 views on the pre-defined hemi-
sphere as the viewpoint candidate set. Note that we need to
sample the candidate set for each object.
5) ActiveRMap [14]: The working pipeline is similar to
uncertainty-guided policy. In particular, we implement the
“discrete (free)” setup of ActiveRMap, which constrains the
drone agent on the pre-defined hemisphere. Having consid-
ered collision avoidance in the design of viewpoint set, we
remove the collision penalty in its optimization objective.
6) Scan-RL [9]: This RL-based policy predicts the next
viewpoint from a 3-dim hemisphere space, relying on the
historical RGB.
7) Ours with Scan-RL’s Representation: To further com-
pare the former Next-Best-View policy Scan-RL [9] with
us, we implement Scan-RL in our experimental setup, with
our action and state space. This free-space NBV policy uses
Scan-RL’s representation only extracted from RGB images
instead of our original hybrid representations.

2. Data Preprocessing
3D Mesh. To boost our NBV policy’s generalizability on
building-scale objects, we rescale the original 3D meshes
from Houses3K [8], OmniObject3D [12] and Objaverse [3]
to a reasonable building size. For example, the size of build-
ing meshes from Houses3K and OmniObject3D are approx-
imately (15m, 15m, 8m).
Ground-truth Point Cloud. We use the Poisson Disk sam-
pling method [13] implemented by Open3D [15] to sample

100, 000 points from 3D meshes. And then we voxelize
these point clouds. These voxelized points are viewed as
ground-truth point clouds of these meshes.

3. Additional Experiments
Number of Training Objects. Motivated by generalizable
RL-based policies [2, 5, 6], we explore the impact of di-
versity of training data for generalizability. As shown in
Table. 2 and Fig. 1, we found that increasing the diversity
of training objects indeed leads to better generalizability for
3D reconstruction.

Table 2. Ablation studies of the number of training objects in our
framework on unseen OmniObject3D house category.

Number of
Training Objects Mean AUC Final Coverage Ratio

1 61.76% 67.32%
2 71.03% 82.98%
4 70.72% 89.53%
8 73.71% 90.47%

16 73.73% 88.23%
32 82.39% 92.41%
64 82.09% 93.70%

128 87.21% 96.75%
256 88.63% 97.12%
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Figure 1. The curve of coverage ratio with the increasing number
of training objects on unseen OmniObject3D house category.

The evidence for sufficient and efficient capturing. To
evaluate both completeness and efficiency, we use the area
under the curve (AUC) of coverage ratio as our main met-
ric, stated in Sec. 4.1. Additionally, the figure below shows
the mean AUC curves for OmniObject3D houses. Our
GenNBV achieves a better coverage ratio under 20 views
(97.12% v.s. 92.53%), and even surpasses the saturated cov-
erage of Scan-RL using merely 5 views.
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The effectiveness of 2D semantic representations. Below,
we add the experiments on Houses3K test set to illustrate
the effectiveness of the proposed semantic representation.
Note that Scan-RL’s representation uses 6 frames, while our
semantic representation only needs 2 frames.

Num. of RGB NBV Policy AUC ↑ FCR ↑ Acc. ↓

2 Ours w/ Scan-RL Repre. 76.31% 79.35% 0.50
Ours (RGB-only) 81.24% 87.90% 0.45

6 Ours w/ Scan-RL Repre. 87.39% 95.63% 0.38
Ours (RGB-only) 87.95% 96.92% 0.38

In addition, we preprocess the RGB images to grayscale
images because we empirically find that the grayscale im-
ages featuring edges are sufficient to guide the NBV predic-
tion and achieve slightly better performance.
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