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Supplementary Material

Figure 1. Comparison of using LIIF (left) and CLIF (right, ours)
as the renderer in our framework (Mountains and FFHQ dataset).
We find CLIF can produce more photorealistic details than LIIF
with the convolutional formulation.

A. Comparison to implementing neural field
autoencoder with LIIF [4]

LIIF [4] is an image neural field defined on a feature map,
which can also be used as the renderer in the framework.
However, we observe that directly implementing our frame-
work with LIIF does not produce photorealistic details, as
shown in Figure 1. LIIF was originally proposed for super-
resolution with L1 loss. We find the generator with LIIF
struggles to learn photorealistic details and the adversar-
ial training quickly collapses with the discriminator as the
winner in the adversarial game. Our proposed CLIF ren-
derer addresses this issue by decoding the patch as a whole
and incorporating a larger context with convolution layers.
Besides having higher capacity, we also find CLIF can be
learned to be scale-consistent even with LPIPS and GAN
loss and without point-independent decoding.

B. Scale-consistency of CLIF

Our CLIF neural field renderer does not assume pixel inde-
pendence and is learned with LPIPS and GAN loss. How-
ever, instead of synthesizing different contents for different
output scales as a conditional GAN, we observe that CLIF
is learned to be scale-consistent, as shown in Figure 3. We
observe that the object boundary precisely aligns when we
render the same latent representation to different resolutions
(while in AnyResGAN [3], the contents and object bound-

Figure 2. Samples of the method where the latent neural field
space is replaced by low-resolution images with the same spatial
dimension (FFHQ dataset). Even at 256 resolution, these images
are overly smooth and lack details, which supports the effective-
ness of having a latent space.

Data Method  FID-256@5K
LR-DM + SR 36.01
AIlHR INFD 9.26
_ LR-DM + SR 37.97
6K-Mix INFD 9.81

Table 1. Comparison to low-resolution diffusion model with any-
resolution upsampler. The upsampling network has the same ar-
chitecture as our decoder-renderer for comparison.

ary may obviously change for different scales). This prop-
erty enables multi-scale supervision on the same latent rep-
resentation in training and solving inverse problems.

C. Ablation on without latent space

To evaluate the benefits of having a latent space for neural
image fields, we compare our method, to a baseline abla-
tion where we remove the encoder and latent space. In-
stead, in this baseline, we first learn an any-scale super-
resolution model for low-resolution images. This super-
resolution model has the same architecture as the compo-
sition of our decoder and renderer R o D. The difference
is that it acts on low-resolution images, rather than latent
codes. We then train a low-resolution diffusion model. At
inference time, we first generate a low-resolution image by
diffusion, then upsample it with R o D. For this baseline,
the low-resolution image has the same spatial dimensions
64 <64 as the latent representation in our main model, and
all other training settings are kept identical.

Figure 2 shows this baseline generates overly smooth im-
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Figure 3. Scale consistency of our CLIF renderer. In each pair, the left is rendering at resolution 1K, the right is rendering at resolution
2K then downsampling to 1K. Yellow/green boxes show two examples of inconsistent areas in AnyResGAN (besides the boxes, the object

boundary also does not align for 1K/2K of AnyResGAN).

Figure 4. Results using LDM [10] trained for 256 x 256 faces to
generate higher-resolution faces at 512 x 512 by making convolu-
tional samples over a larger noise map.

ages. This is already visible at 256x256. The quantitative
comparison in Table 1, confirms our model outperforms the
baseline on FID. We hypothesize this is because: (i) the la-
tent representation contains much richer information com-
pared to a simple low-resolution RGB image with the same
spatial dimension. Intuitively, with the latent representa-
tion, our first training stage can encode information rele-
vant to our final goal to synthesize a high-resolution image,
which is impossible with a plain RGB low-resolution im-
age. This information is preserved by the diffusion model
in the second training stage. (ii) The latent space (with VQ
or KL regularization) is much more robust than RGB space
to the domain shift from real to generated sample.

D. Convolutional samples of LDM [10] for
higher-resolution generation

In LDM [10], the iterative denoising process is operating
over a noise map with a UNet, where the UNet contains
convolution and attention layers. Since both types of layers
can be directly applied to higher-resolution input, a poten-
tial method to generate higher-resolution images is to pro-

w/ random downsampling GT w/o random downsampling GT

Figure 5. Comparison of training with/without random downsam-
pling the ground-truth images (Mountains dataset, outputs in the
autoencoder stage). Training without random downsampling pro-
duces samples with worse quality.

cess a noise map with higher resolution without changing
the network. Despite this method increasing the computa-
tion cost linearly to the number of pixels, we observe that
it fails to generate images with correct global structures, as
shown in Figure 4 for the FFHQ unconditional generation
task. We hypothesize this is because the model trained for
256 x 256 images learns to generate faces at a specific scale,
when making convolutional samples at 512 x 512, it might
try to generate multiple 256 x 256 faces at different spatial
locations and fails to preserve the global structure.

E. Effect of scale-varied training on Mountains
dataset

Scale-varied training, i.e., training with randomly down-
sampled ground-truth images, allows the same latent rep-
resentation to get supervision from multiple scales with the
fixed-resolution patch, which helps the performance even
if all ground-truth images are at fixed and high resolution.
Besides results on the FFHQ dataset shown in the main pa-



Figure 6. 2K results on faces. When training data is available, our
method can be used to generate images at resolutions above 1K.
Here we show 2K generated images trained on datasets of high-
resolution portraits.

per, we observe that scale-varied training is more important
on the Mountains dataset which contains more complex im-
ages. As shown in Figure 5, without random downsampling
of the ground-truth images during training, the model pro-
duces samples with worse quality.

F. Image generation beyond 1K

Our method uses patchwise supervision at arbitrary coordi-
nates and can be trained on higher-resolution images with-
out changing the architecture. We explore going beyond the
1024 resolution and train our model on a collected dataset
of faces, which contains images at varied resolutions be-
tween 1K to 2K (about 84% images have 2K resolution).
We show some qualitative results in Figure 6. We observe
that, with no change to the architecture, our method learns
to generate highly detailed textures on skin and hairs for 2K
faces, which suggests the potential for pushing our method
further, for ultra-high resolution image generation.

G. Comparison to any-resolution learning in
GANs

The idea of using neural fields for training with any-
resolution images was explored for GANSs in ScaleParty [9]
and AnyResGAN [3]. We take AnyResGAN [3], which
worked for more diverse high-resolution images, as an ex-
ample for comparison. The pros and cons of AnyRes-
GAN and image neural field diffusion models largely de-
rive from the difference between GANs and diffusion mod-
els. GANSs are still state-of-the-art on FID, especially for
the single-class generation. For example, for typical fixed-
resolution synthesis on FFHQ, StyleGANv3 [6] (the back-
bone of AnyResGAN) reports FID 2.79 while LDM [10]
(the backbone of our implementation) has FID at 4.98.

pFID@50K

Model
256/1K  512/1K  1K/IK
AnyRes-GAN [3] 6.17 4.02 3.25
INFD 7.53 6.84 5.13

Table 2. FID comparison between any-resolution GAN and dif-
fusion model on Mountains dataset. While GANs are state-of-
the-art at single class FID, the diffusion-based method achieves
competitive FID and does not have the GAN artifacts shown in
Figure 7, and shows better visual quality on actual images. We
refer to Sec. G for random samples and detailed discussions.

However, FID is counting for the statistics of deep features
and is not a perfect metric yet for image generation [1, 2].
Image neural field diffusion model inherits the advantages
of diffusion models over GANs. We detail below.

Sample quality. While our method achieves competi-
tive FID to AnyResGAN, as a diffusion model, we find it
shows better quality in actual samples. From the samples,
we observe that AnyResGAN commonly shows artifacts of
regular patterns (e.g. grid in the sky and water as shown
in Figure 7, lines on the mountains, and array-like trees).
We also find the best samples from our method have better
quality than the best samples from AnyResGAN.

Sample diversity. Besides the results we discussed
above, we demonstrate random samples from ground-truth
images in Figure 12, AnyResGAN in Figure 13, and im-
age neural field diffusion model’s in Figure 14. Overall, we
observe that AnyResGAN’s samples are more in flat and
simple layouts (typically a front view of a mountain, with
a horizontal sky-mountain line), while the diffusion-based
method has better sample diversity (usually more layers and
contents along the depth in the layout).

Besides, unlike AnyResGAN, INFD is scale-consistent
as shown in Figure 3. Finally, INFD can be used for text-to-
image synthesis (more samples are in Figure 10,11), which
remains a challenge for any-resolution GANS.

H. Discussion on dataset scale-consistency

Our model assumes the images in the dataset to be
scale-consistent, i.e., downsampled high-resolution images
follow the same distribution as low-resolution images.
Datasets that severely violate this assumption would hurt
the performance of our model. This is because if dataset
scale consistency is violated, the latent code encoded from
low-resolution images might follow a different distribu-
tion than the latent code encoded from downsampled high-
resolution images. The high-resolution supervision is only
applied to the latter type of latent code during training,
therefore, the former type of latent code might not have a
guaranteed quality when rendered at high resolution. For
text-to-image synthesis, our current model is finetuned with
clean high-resolution data from the Stable Diffusion model,



Figure 7. Examples of artifacts in AnyResGAN [3] on FFHQ (black dots) and Mountains (grid-like patterns). Image neural field diffusion
model is based on diffusion models and avoids these artifacts (see random examples in Figure 8) and the main paper’s Figure 4.

while the Stable Diffusion model could have seen many
noisy low-resolution images in its pre-training, appending
text prompts like “high definition” or “4k” reduces such dis-
tribution shift and thus improves the quality. Training from
scratch with scale-consistent data will not have a distribu-
tion shift in the latent space and might thus avoid this issue.

I. Additional Generated Samples

We show additional generated samples in Figure 8,9,10,11
for FFHQ-1024, 2K portrait dataset, and text-to-image gen-
eration at 2K resolution, where the experimental settings are
the same as the main paper. In text-to-image generation, we
observe that while the output resolution is at 2K, append-
ing the prompt “high definition” or “4k” after the text de-
scription is helpful to generate high-quality high-resolution
images.



Figure 8. Additional generated samples of our method on FFHQ-1024.



Figure 9. Additional generated samples of our method on 2K portrait dataset.
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“A straw hat, high definition, 4k~
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“Portrait of a colored iguana, high definition, 4k

Figure 10. Additional generated samples of our method on text-to-image generation (resolution at 2K).



LDM + Real-ESRGAN

LDM + Real-ESRGAN

=

“A pancake, high definition, 4k”

Ours

“A leather sofa, high definition, 4k

Figure 11. Additional generated samples of our method on text-to-image generation (resolution at 2K).



Figure 12. Sample diversity of ground-truth images on Mountains dataset (shown in 256 X 256).



Figure 13. Sample diversity of AnyResGAN [3] on Mountains dataset (shown in 256 X 256).



Figure 14. Sample diversity of image neural field diffusion model on Mountains dataset (shown in 256 X 256).



J. Implementation Details
J.1. Model architecture

Our encoder and decoder follow the architecture used in
LDM [10]. They are modified from a UNet’s encoder and
decoder by removing the connections that skip the bottle-
neck latent representation. The encoder and decoder are
symmetric, each has 3 levels. Downsampling/upsampling
happens after each level. The base channel is 128, the chan-
nel multiplication factors are 1,2,4 for different levels in the
encoder. There are 2 ResNet blocks within each level. The
feature map of latent representation has a downsampling
rate of 4 compared to the input and has 3 channels. The
CLIF renderer is a convolutional neural network with one
convolution layer, and two ResNet blocks, followed by an-
other convolution layer, convolution kernel sizes are all 3.

Our diffusion model in latent space follows the imple-
mentation in ADM [5] (also used in LDM [10]). The en-
coder and decoder have base channels 224 and channel
multiplication factors are 1,2,3,4 at different encoder levels,
with 2 ResNet blocks at every level. At the downsampling
rates of 2,4,8, multi-head self-attention with 32 channels per
head is applied on the feature map.

J.2. Training setting

For the first stage, the encoder, decoder, and renderer are
end-to-end trained jointly. We use Adam [7] with 81 =
0.5, 82 = 0.9 and optimize for 1M iterations. The learn-
ing rate is 3.6 - 107° for a batch size of 8. The discrimi-
nator for GAN loss is adversarially trained with the same
optimizer specifications. On Mountains and text-to-image
tasks, we keep the ground-truth images at their original res-
olution with a probability of 0.5 in the last 400K iterations.

For the second stage, the latent space diffusion model is
trained with AdamW [8] for 600K iterations on FFHQ, for
1.7M iterations on Mountains, with 81 = 0.9, 85 = 0.999
and weight decay of 0.01. The learning rate is 9.6 - 10~°
for a batch size of 48. For either the first stage or the second
stage, it takes about 4 days every 1M iterations to train our
model on 4 NVIDIA A100 GPUs.
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