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Figure A. Different ways to use InternVL. By flexibly combining the vision encoder and the language middleware, InternVL can support
various vision-language tasks, including contrastive tasks, generative tasks, and multi-modal dialogue.
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A. Supplementary Materials
A.1. More Experiments

Zero-Shot Image Classification on 20 Datasets. In this
section, we expand our examination to showcase the effec-
tiveness and robustness of InternVL in 20 different zero-
shot image classification benchmarks. As indicated in Ta-
ble B, InternVL registers an average performance of 78.1%
across all 20 benchmarks. This performance notably ex-
ceeds that of the previously leading method, EVA-02-CLIP-
E+ [31], by a margin of 1.0 points. This underscores that,
beyond ImageNet [28] and its variants, InternVL possesses
robust generalization capabilities across a variety of differ-
ent domains in zero-shot image classification.
Zero-Shot Image-Text Retrieval on XTD. Table A reports
the results of InternVL on the multilingual image-text re-

† This work is done when they are interns at Shanghai AI Laboratory;
B corresponding author (daijifeng@tsinghua.edu.cn)

method EN ES FR ZH IT KO RU JP avg.
mUSE m3 [106] 85.3 78.9 78.9 76.7 73.6 67.8 76.1 70.7 76.0
M-CLIP [11] 92.4 91.0 90.0 89.7 91.1 85.2 85.8 81.9 88.4
MURAL [49] − 92.9 − 89.7 91.8 88.1 87.2 − −
AltCLIP [17] 95.4 94.1 92.9 95.1 94.2 94.4 91.8 91.7 93.7
OpenCLIP-XLM-R-B [47] 95.8 94.4 92.5 91.8 94.4 86.3 89.9 90.7 92.0
OpenCLIP-XLM-R-H [47] 97.3 96.1 94.5 94.7 96.0 90.2 93.9 94.0 94.6
InternVL-C (ours) 97.3 95.7 95.1 95.6 96.0 92.2 93.3 95.5 95.1
InternVL-G (ours) 98.6 97.7 96.5 96.7 96.9 95.1 94.8 96.1 96.6

Table A. Comparison of zero-shot multilingual image-text re-
trieval performance on the XTD dataset. Multiple languages
include English (EN), Spanish (ES), French (FR), Chinese (ZH),
Italian (IT), Korean (KO), Russian (RU), and Japanese (JP). We
follow M-CLIP [11] to report the recall@10 on Image-to-Text.

trieval dataset XTD [1], spanning eight languages. As can
be seen, InternVL-C achieves an average recall@10 score
of 95.1% across these languages. The second stage model,
InternVL-G, further improves retrieval performance. It at-
tains the highest scores in each individual language and es-
tablishes a new record for average performance at 96.6%.
Zero-Shot Video Retrieval. In Table C, we present our
results of zero-shot video-text retrieval on the MSR-VTT
dataset [104] using our InternVL models, i.e. InternVL-C
and InternVL-G. In the 1-frame setting, we select a sin-
gle central frame from each video. In the 8-frame set-
ting, we uniformly extract 8 frames from each video, treat
them as independent images for encoding, and then average
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OpenAI CLIP-L+ [81] 94.9 74.4 79.0 87.2 68.7 33.4 34.5 79.3 41.0 56.0 61.5 49.1 78.6 93.9 52.4 93.8 70.7 65.4 99.4 78.1 69.6
EVA-01-CLIP-g [92] 98.3 88.7 62.3 87.7 74.2 32.4 28.6 91.7 50.0 61.3 73.6 52.2 74.5 93.5 49.1 94.2 58.4 70.3 98.9 83.2 71.2
OpenCLIP-g [47] 98.2 84.7 71.9 88.1 74.1 44.6 30.9 94.0 51.0 68.7 64.7 55.8 81.0 92.4 49.7 93.9 56.7 69.6 98.9 81.6 72.5
OpenCLIP-H [47] 97.4 84.7 72.9 85.0 75.2 42.8 30.0 93.5 52.9 67.8 72.7 52.0 80.1 92.7 58.4 94.5 64.3 70.5 98.5 77.7 73.2
EVA-02-CLIP-L+ [92] 98.9 89.8 64.3 89.5 74.8 37.5 33.6 91.6 45.8 64.5 71.4 51.0 77.2 94.2 57.6 94.2 64.6 69.8 99.7 82.7 72.6
EVA-01-CLIP-g+ [92] 99.1 90.1 71.8 88.1 74.3 39.4 30.8 90.7 52.6 67.3 73.2 56.0 79.7 93.7 66.5 94.8 58.6 71.4 99.5 82.9 74.0
OpenCLIP-G [47] 98.2 87.5 71.6 86.4 74.5 49.7 33.8 94.5 54.5 69.0 70.0 59.5 81.5 93.1 62.5 95.2 65.2 72.6 98.5 80.7 74.9
EVA-02-CLIP-E [92] 99.3 92.5 76.7 89.0 76.5 47.9 34.7 94.4 56.3 68.2 77.6 55.1 82.5 95.2 67.1 95.6 61.1 73.5 99.2 83.0 76.3
EVA-02-CLIP-E+ [92] 99.3 93.1 74.7 90.5 75.1 54.1 35.7 94.6 58.1 68.2 75.8 58.6 84.5 94.9 67.7 95.8 61.4 75.6 99.2 85.6 77.1
InternVL-C (ours) 99.4 93.2 80.6 89.5 76.0 52.7 34.1 94.2 72.0 70.7 79.4 56.2 86.1 95.3 65.5 96.0 67.9 74.2 99.5 80.0 78.1

Table B. Comparison of zero-shot image classification performance on 20 other datasets. These results indicate that, in addition to
ImageNet [28], InternVL also possesses good generalization capabilities in zero-shot image classification across various domains.

MSR-VTT (1K test set) [104]
Video → Text Text → Videomethod #F

R@1 R@5 R@10 R@1 R@5 R@10
avg.

OpenAI CLIP-L [81] 1 27.8 49.4 58.0 29.0 50.5 59.2 45.7
InternVL-C (ours) 1 35.3 56.6 66.6 37.5 60.9 70.9 54.6
InternVL-G (ours) 1 36.6 58.3 67.7 39.1 61.7 70.7 55.7
OpenAI CLIP-L [81] 8 26.6 50.8 61.8 30.7 54.4 64.0 48.1
Florence [109] 8 – – – 37.6 63.8 72.6 –
InternVideo† [101] 8 39.6 – – 40.7 – – –
UMT-L† [60] 8 38.6 59.8 69.6 42.6 64.4 73.1 58.0
LanguageBind† [116] 8 40.9 66.4 75.7 44.8 70.0 78.7 62.8
InternVL-C (ours) 8 40.2 63.1 74.1 44.7 68.2 78.4 61.5
InternVL-G (ours) 8 42.4 65.9 75.4 46.3 70.5 79.6 63.4

Table C. Comparison of zero-shot video-text retrieval per-
formance on MSR-VTT. “#F” denotes the number of frames.
† These models are trained with temporal attention layers.

the embeddings. The results showcase consistent improve-
ment across various metrics such as R@1, R@5, R@10,
and the average score. Importantly, both models exhibit
promising outcomes in single-frame and multi-frame con-
figurations, with InternVL-G achieving slightly higher per-
formance than InternVL-C, especially in the multi-frame
setting. These results underscore the effectiveness of QL-
LaMA in harmonizing visual and linguistic features.
Fine-tuned Image-Text Retrieval. In Table D, we report
the fine-tuned image-text retrieval results of InternVL, on
both the English and Chinese versions of the Flickr30K
dataset [55, 80]. The specific hyperparameters for fine-
tuning are shown in Table I. As can be seen, our mod-
els obtain competitive performance, with InternVL-G-FT
marginally surpassing InternVL-C-FT in both datasets. No-
tably, in the highly challenging Flickr30K-CN, both models
show a promising ability to handle cross-lingual retrieval
tasks. These results demonstrate the effectiveness of our
language middleware, especially in the retrieval tasks.
Tiny LVLM. Tiny LVLM [87] is an ability-level bench-
mark for evaluating the performance of multimodal dia-
logue models. It provides a systematic assessment of five
categories of multimodal capabilities, including visual per-

Flickr30K (English, 1K test set) [80]
Image → Text Text → Imagemethod

R@1 R@5 R@10 R@1 R@5 R@10
avg.

ALIGN [50] 95.3 99.8 100.0 84.9 97.4 98.6 96.0
FILIP [107] 96.6 100.0 100.0 87.1 97.7 99.1 96.8
Florence [109] 97.2 99.9 − 87.9 98.1 − −
BLIP [58] 97.4 99.8 99.9 87.6 97.7 99.0 96.9
OmniVL [97] 97.3 99.9 100.0 87.9 97.8 99.1 97.0
BEiT-3 [99] 97.5 99.9 100.0 89.1 98.6 99.3 97.4
ONE-PEACE [98] 97.6 100.0 100.0 89.6 98.0 99.1 97.4
InternVL-C-FT (ours) 97.2 100.0 100.0 88.5 98.4 99.2 97.2
InternVL-G-FT (ours) 97.9 100.0 100.0 89.6 98.6 99.2 97.6

method Flickr30K-CN (Chinese, 1K test set) [55] avg.
Wukong-ViT-L [38] 92.7 99.1 99.6 77.4 94.5 97.0 93.4
CN-CLIP-ViT-H [105] 95.3 99.7 100.0 83.8 96.9 98.6 95.7
R2D2-ViT-L [103] 95.6 99.8 100.0 84.4 96.7 98.4 95.8
InternVL-C-FT (ours) 96.5 99.9 100.0 85.2 97.0 98.5 96.2
InternVL-G-FT (ours) 96.9 99.9 100.0 85.9 97.1 98.7 96.4

Table D. Comparison of fine-tuned image-text retrieval perfor-
mance. We evaluate English and Chinese image-text retrieval us-
ing Flickr30K [80] and Flickr30K-CN [55], with separate fine-
tuning for each to prevent data leakage.

ception, visual knowledge acquisition, visual reasoning, vi-
sual commonsense, and object hallucination. We report our
results on Tiny LVLM in Table E.

A.2. More Ablation Studies

Compatibility with Other LLM. In this experiment, we
test the compatibility of InternVL with LLMs other than
Vicuna [114]. The experimental setup used here is the same
as in Table 9 of the main paper. As shown in Table F,
InternLM-7B [93] achieves slightly better performance than
Vicuna-7B [114]. This indicates that our InternVL exhibits
promising compatibility with various LLMs.
Efficiency Analysis. In this study, we analyze the com-
putational efficiency of InternVL in encoding image-text
pairs. The entire encoding process consists of two parts:
image encoding and text encoding. The analysis covered
two models (InternVL-C and InternVL-G) and their per-
formance across three different image sizes (224, 336, and
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method LLM VR VP VKA VC OH Overall
MiniGPT-4 [117] Vicuna-7B 37.6 37.8 17.6 49.0 50.7 192.6
LLaVA [67] Vicuna-7B 41.6 38.3 18.7 49.4 49.0 197.0
VisualGLM [29] ChatGLM-6B 37.3 36.3 46.9 37.6 54.0 211.9
Otter [57] Otter-9B 41.6 37.0 15.1 52.4 74.0 216.4
LLaMA-Adapter-V2 [34] LLaMA-7B 43.5 46.8 22.3 56.0 60.7 229.2
Lynx [110] Vicuna-7B 52.2 65.8 17.6 57.4 86.3 279.2
BLIP-2 [59] FlanT5xl 44.9 49.0 64.1 44.0 82.7 284.7
InstructBLIP [24] Vicuna-7B 46.7 48.0 61.7 59.2 85.0 300.6
LLaVA-1.5 [66] Vicuna-7B 55.6 49.0 57.0 57.2 88.3 307.2
Qwen-VL-Chat [3] Qwen-7B 62.4 54.5 55.1 54.8 90.0 316.8
Bard [36] Bard 64.2 57.0 68.1 59.6 70.7 319.6
InternLM-XComposer [111] InternLM-7B 55.8 53.8 64.1 61.8 87.0 322.5
InternVL-Chat (ours) Vicuna-13B 56.4 52.3 68.0 62.0 89.0 327.6

Table E. Evaluation of Tiny LVLM test set. Here we report
five categories of multimodal capabilities, including visual rea-
soning (VR), visual perception (VP), visual knowledge acquisition
(VKA), visual commonsense (VC), and object hallucination (OH).

visual glue visual question answering dialogue
encoder layer LLM VQAv2 GQA VizWiz VQAT MME POPE
IViT-6B MLP Vicuna-7B 79.3 62.9 52.5 57.0 1525.1 86.4
IViT-6B MLP InternLM-7B 79.7 63.2 53.1 58.0 1532.8 86.4

Table F. Compatibility with other LLM. Here we use InternLM
[93] as an example to verify the compatibility of InternVL with
LLMs other than Vicuna [114]. The experimental settings used
here are the same as in Table 9 of the main paper.

image encode image (ms) encode text (ms) totalmethod size InternViT-6B QLLaMA QLLaMA time FPS

InternVL-C 224 15.5 – 4.9 20.4 48.9
InternVL-C 336 35.2 – 4.9 40.1 24.9
InternVL-C 448 66.9 – 4.9 71.8 13.9
InternVL-G 224 15.5 8.2 4.9 28.6 35.0
InternVL-G 336 35.2 10.3 4.9 50.4 19.8
InternVL-G 448 66.9 12.8 4.9 84.6 11.8

Table G. Efficiency analysis of InternVL for encoding image-
text pairs. The total time to encode an image-text pair includes
both the image encoding part and the text encoding part. We mea-
sure the time cost with a batch size of 128 on a single A100 GPU.
Flash Attention [25] and bf16 precision are used during testing.

448). The results are shown in Table G.
From these results, we find that: (1) As the image size

increases, the encoding time also significantly increases,
leading directly to a decrease in frame rate; (2) InternVL-G
slightly increased the encoding time due to the introduc-
tion of QLLaMA for secondary image encoding, but it still
maintains a reasonable frame rate across all image sizes;
(3) Even though we scale up the text encoder, the addi-
tional cost of text encoding is not significant, as the main
time expenditure lies in image encoding. In summary, when
choosing between InternVL-C and InternVL-G, one should
weigh the trade-off between computational efficiency and
potential performance improvements based on specific re-
quirements. Additionally, these results were measured us-
ing PyTorch with Flash Attention [25] and bf16 precision,
and there is still considerable room for optimization, such
as using model quantization and TensorRT.

config stage 1 stage 2
image enc. weight init. random init. [4] from stage 1
text enc. weight init. from [23] from stage 1
image enc. peak learning rate 1e-3 frozen
text enc. peak learning rate 1e-4 frozen
cross attn peak learning rate – 5e-5
learning rate schedule cosine decay cosine decay
optimizer AdamW [68] AdamW [68]
optimizer hyper-parameters β1, β2 = 0.9, 0.95 β1, β2 = 0.9, 0.98
weight decay 0.1 0.05
input resolution 1962 → 2242 2242

patch size 14 14
total batch size 164K 20K
warm-up iterations 5K 2K
total iterations 175K 80K
samples seen 28.7B 1.6B
drop path rate [45] uniform (0.2) 0.0
data augmentation random resized crop random resized crop
numerical precision DeepSpeed bf16 [82] DeepSpeed bf16 [82]
trainable / total parameters 13B / 13B 1B / 14B
GPUs for training 640×A100 (80G) 160×A100 (80G)

Table H. Training settings of InternVL’s stage 1 and stage 2.
“1962 → 2242” means we initially train at a 196×196 resolution,
and later switch to 224×224 resolution for the final 0.5 billion
samples, for higher training efficiency.

A.3. Detailed Training Settings

Settings of Stage 1. As shown in Table H, in this stage, the
image encoder InternViT-6B is randomly initialized using
the BEiT’s initialization method [4], and the text encoder
LLaMA-7B is initialized with the pre-trained weights from
[23], a multilingual LLaMA-7B. All parameters are fully
trainable. We employ the AdamW optimizer [68] with β1 =
0.9, β2 = 0.95, weight decay at 0.1, and a cosine learning
rate schedule starting at 1e-3 and 1e-4 for the image and
text encoders, respectively. We adopt a uniform drop path
rate of 0.2. The training involves a total batch size of 164K
across 640 A100 GPUs, extending over 175K iterations to
process about 28.7 billion samples. To enhance efficiency,
we initially train at a 196×196 resolution, masking 50% of
image tokens [63], and later switch to 224×224 resolution
without masking for the final 0.5 billion samples.
Settings of Stage 2. In this stage, InternViT-6B and QL-
LaMA inherit their weights from the first stage, while the
learnable queries and cross-attention layers in QLLaMA
are randomly initialized. Benefiting from the powerful en-
coding capabilities learned in the first stage, we keep both
InternViT-6B and QLLaMA frozen and only train the newly
added parameters. The input images are processed at a res-
olution of 224×224. For optimization, the AdamW opti-
mizer [68] is employed with β1 = 0.9, β2 = 0.98, weight
decay set at 0.05, and a total batch size of 20K. The training
extends over 80K steps across 160 A100 GPUs, inclusive of
2K warm-up steps, and is governed by a cosine learning rate
schedule with a peak learning rate of 5e-5. More detailed
training settings are listed in Table H.
Settings of Stage 3. At this stage, we have two different
configurations. One is to use InternViT-6B separately, as
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config retrieval fine-tuning
image-text data Flickr30K [80] / Flickr30K-CN [55]
peak learning rate 1e-6
layer-wise lr decay rate InternViT-6B (0.9), QLLaMA (0.9)
learning rate schedule cosine decay
optimizer AdamW [68]
optimizer hyper-parameters β1, β2 = 0.9, 0.999
weight decay 0.05
input resolution 3642

patch size 14
total batch size 1024
warm-up iterations 100
training epochs 10
drop path rate [45] 0.3
data augmentation random resized crop & flip
numerical precision DeepSpeed bf16 [82]
trainable / total parameters 14B / 14B
GPUs for training 32×A100 (80G)

Table I. Training settings of retrieval fine-tuning. We fine-tune
InternVL on Flickr30K and Flickr30K-CN separately.

config ImageNet linear probing
peak learning rate 0.2
learning rate schedule cosine decay
optimizer SGD
optimizer momentum 0.9
weight decay 0.0
input resolution 2242

patch size 14
total batch size 1024
warm-up epochs 1
training epochs 10
data augmentation random resized crop & flip
GPUs for training 8×A100 (80G)

Table J. Training settings of ImageNet linear probing.

shown in Figure A (c). The other is to use the entire In-
ternVL model simultaneously, as shown in Figure A (d).

(1) InternVL-Chat (w/o QLLaMA): For this setup, we
follow the training recipes of LLaVA-1.5 [66]. We use
the same hyperparameters and datasets for supervised fine-
tuning, i.e. we first train the MLP layers with the LGS-558K
[67] dataset, and then train the LLM with the LLaVA-Mix-
665K [66] dataset, both for one epoch.

(2) InternVL-Chat (w/ QLLaMA): For this more ad-
vanced setup, we also conducted the training in two steps.
We first train the MLP layers with our custom SFT dataset
and then fine-tune the LLM with it. Due to the expansion of
the dataset, we increased the batch size to 512.
Settings of Retrieval Fine-tuning. In this experiment, all
parameters of InternVL are set to be trainable. We conduct
separate fine-tuning on the Flickr30K [80] and Flickr30K-
CN [55]. Following common practice [59], a 364×364 res-
olution is adopted for fine-tuning. To avoid over-fitting,
we apply a layer-wise learning rate decay of 0.9 to both
InternViT-6B and QLLaMA, along with a drop path rate
of 0.3 for InternViT-6B. The AdamW optimizer [68] is uti-
lized, with a total batch size of 1024, for fine-tuning the In-
ternVL model across 10 epochs. For more detailed training
settings, please refer to Table I.
Settings of ImageNet Linear Probing. We follow the

config linear probing / head tuning / full tuning
peak learning rate 4e-5
layer-wise lr decay rate – / – / 0.95
learning rate schedule polynomial decay
optimizer AdamW [68]
optimizer hyper-parameters β1, β2 = 0.9, 0.999
weight decay 0.0 / 0.05 / 0.05
input resolution 5042

patch size 14
total batch size 16
warm-up iterations 1.5K
total iterations 80K
drop path rate [45] 0.0 / 0.0 / 0.4
data augmentation default augmentation in MMSeg [22]
numerical precision DeepSpeed bf16 [82]
GPUs for training 8×A100 (80G)

Table K. Training settings of ADE20K semantic segmentation.
We list the hyperparameters for three different configurations, in-
cluding linear probing, head tuning, and full-parameter tuning.

common practices of linear probing in previous methods
[27, 41, 77]. Specifically, we employ an additional Batch-
Norm [48] to normalize the pre-trained backbone features
during training. Besides, we concatenate the average-
pooled patch token features with the class token. The linear
head is trained using the SGD optimizer for 10 epochs on
ImageNet-1K [28], with a total batch size of 1024, a peak
learning rate of 0.2, 1 epoch warm-up, and no weight de-
cay. Data augmentation involves random-resized-crop and
flip. For more training details, please see Table J.
Settings of ADE20K Semantic Segmentation. In Table K,
we have listed the hyperparameters for three different con-
figurations in ADE20K semantic segmentation, including
linear probing, head tuning, and full-parameter tuning.

A.4. Data Preparation for Pre-training

Training Data for Stage 1 & Stage 2. During the
first and second stages, we employed a vast collection of
image-text pair data (see Figure B (a)), such as LAION-en
[84], LAION-multi [84], LAION-COCO [85], COYO [10],
Wukong [38], among others [15, 78, 88]. A detailed intro-
duction to these datasets is provided in Table L.
Training Data Cleaning for Stage 1 & Stage 2. To fully
utilize web-scale image-text data, we adopted different data
filtering strategies in stage 1 and stage 2.

(1) Stage 1: In the first stage, we applied only minor data
filtering, thus retaining the vast majority of the data. We
considered six factors: CLIP similarity, watermark proba-
bility, unsafe probability, aesthetic score, image resolution,
and caption length, to remove extreme data points and avoid
disrupting training stability. Additionally, we removed data
that was duplicated with ImageNet-1K/22K [28], Flickr30K
[80], and COCO [64] to ensure the reliability of our zero-
shot evaluations. Due to download failures and the use of
our data filtering pipeline, the total amount of data retained
in the first stage was 4.98 billion.

(2) Stage 2: In the second stage, we implemented a more

4



(a) Training Data for Stage 1 & 2 (b) Testing Datasets for Image Classification

LAION-COCO ImageNet-ReaL Country-211 FER2013 Rendered SST2CIFAR-100

COYO SBU ImageNet-V2 ImageNet-Sketch Stanford Cars Flowers-102 Resisc45MNIST

LAION-multiCC3M ObjectNetImageNet-A Birdsnap Food-101 STL10Caltech-101

WukongCC12M Multilingual IN-1KImageNet-R DTD GTSRB VOC2007SUN397

LAION-en ImageNet-1K RGVC Aircraft Eurosat PetsCIFAR-10

Flickr30K COCO-CN Flickr30K-CN XTDCOCOKinetics 400 Kinetics 600 Kinetics 700

(d) Testing Datasets for Image-Text Retrieval(c) Testing Datasets for Video Classification

ADE20KCOCO Flickr30K NoCapsMSR-VTT

(e) Testing Dataset for Video-Text Retrieval (f) Testing Datasets for Image Captioning (g) Testing Dataset for Segmentation

Training Sets (English) Training Sets (Multilingual)

ImageNet-1K

Zero-Shot Test Sets (English) Zero-Shot Test Sets (Multilingual) Datasets for Transfer Learning

Figure B. Panoramic overview of the datasets used in InternVL’s stage 1 and stage 2. During the training of stage 1 and stage 2, we
utilize web-scale image-text data from a variety of sources to train our InternVL model, as shown in (a). To assess InternVL’s capabilities
in handling generic visual-linguistic tasks, we conducted extensive validations across a range of tasks and datasets, including (b) image
classification, (c) video classification, (d) image-text retrieval, (e) video-text retrieval, (f) image captioning, and (g) semantic segmentation.

stringent data filtering strategy. With generative supervision
included, we deleted most of the low-quality data based on
the captions, mainly considering the length, completeness,
readability, and whether they were gibberish or boilerplate
(like menus, error messages, or duplicate text), contained
offensive language, placeholder text, or source code. We
retained only 1.03 billion entries.
Testing Datasets for Image Classification. We conducted
extensive validation on image classification tasks (see Fig-
ure B (b)), including the linear probing performance of
InternViT-6B and the zero-shot performance of InternVL-
C. These datasets used are listed in Table L.
Testing Datasets for Video Classification. As shown in
Figure B (c), to evaluate the capabilities of video classifi-
cation, we utilize the following Kinetics datasets: Kinetics
400 [12], Kinetics 600 [13], and Kinetics 700 [14].
Testing Datasets for Image-Text Retrieval. We use five
datasets (see Figure B (d)) to evaluate InternVL’s zero-shot,
multilingual image-text retrieval capabilities. A detailed in-
troduction to these datasets is provided in Table M.
Testing Dataset for Video-Text Retrieval. As shown in
Figure B (e), we use the MSR-VTT [104] dataset to evaluate
our InternVL in zero-shot video-text retrieval.
Testing Dataset for Image Captioning. As illustrated in
Figure B (f), we use three image captioning datasets to
test our InternVL model. A detailed introduction to these
datasets is provided in Table N.
Testing Dataset for Semantic Segmentation. We use the
ADE20K [115] dataset to study the pixel-level perceptual

capacity of InternViT-6B, as shown in Figure B (g). A de-
tailed introduction to this dataset is provided in Table N.

A.5. Data Preparation for SFT

Training Data for SFT. In this stage, we collect a wide
range of high-quality instruction data. For non-dialogue
datasets, we follow the method described in [66] for con-
version. A detailed introduction is provided in Table O.
Testing Datasets for SFT. We validate the effectiveness of
our supervised fine-tuned InternVL-Chat models on three
tasks, including image captioning, visual question answer-
ing, and multi-modal dialogue. There datasets are listed in
Table P. For most of these datasets, we employ the same
response formatting prompt as for LLaVA-1.5 [66].
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dataset introduction
Training Data for Stage 1 & Stage 2.
LAION-en [84] LAION-en is a part of the LAION-5B dataset, containing 2.32 billion English-only image-text pairs.
LAION-multi [84] LAION-multi is another segment of LAION-5B, featuring 2.26 billion image-text pairs across more than

100 languages, and is ideal for multilingual studies.
Laion-COCO [85] Laion-COCO comprises 663 million synthetic captions for web images, generated using a blend of BLIP-

L/14 [58] and CLIP models [81].
COYO [10] COYO-700M is a large-scale dataset that contains 747 million image-text pairs as well as many other

meta-attributes to increase the usability to train various models. It follows a similar strategy to previous
vision-language datasets, collecting many informative pairs of alt-text and its associated image in HTML
documents.

Wukong [38] Wukong is a large-scale Chinese image-text dataset for benchmarking different multi-modal pre-training
methods. It contains 100 million Chinese image-text pairs from the web.

CC3M [88] This dataset consists of approximately 3 million images, each annotated with a caption.
CC12M [15] CC12M is a dataset with 12 million image-text pairs. It is larger and covers a much more diverse set of

visual concepts than the CC3M [88].
SBU [78] The SBU Captioned Photo Dataset is a collection of over 1 million images with associated text descriptions

extracted from Flicker.
Testing Datasets for Image Classification.
ImageNet-1K [28] A large-scale dataset commonly used in image classification, consisting of over 1 million images across 1K

different classes.
ImageNet-ReaL [7] It contains ImageNet val images augmented with a new set of “re-assessed” labels. These labels are col-

lected using an enhanced protocol, resulting in multi-label and more accurate annotations.
ImageNet-V2 [83] A dataset created to test the robustness of models trained on ImageNet-1K, containing new test images

collected following the original methodology.
ImageNet-A [44] It consists of real-world, unmodified, and naturally occurring examples that are misclassified by ResNet

models [40]. It’s designed to highlight the challenges of adversarial examples in natural settings.
ImageNet-R [43] A set of images labeled with ImageNet labels obtained by collecting art, cartoons, deviantart, graffiti, em-

broidery, graphics, origami, paintings, patterns, plastic objects, plush objects, sculptures, sketches, tattoos,
toys, and video game renditions of ImageNet classes. It has renditions of 200 ImageNet classes resulting in
30K images.

ImageNet-Sketch [96] It consists of 51K images, approximately 50 images for each of the ImageNet classes. It is constructed
using Google Image queries with the standard class name followed by “sketch of”.

ObjectNet [5] ObjectNet is a crowd-sourced test set of 50K images featuring objects in unusual poses and cluttered scenes,
designed to challenge recognition performance. It includes controls for rotation, background, and view-
point, and covers 313 object classes, with 113 overlapping with ImageNet [28].

Multilingual IN-1K [54] An adaptation of ImageNet-1K supporting multilingual annotations, facilitating research in cross-lingual
image classification.

CIFAR-10/100 [53] It comprises 60K 32×32 images in 10 classes (CIFAR-10) or 100 classes (CIFAR-100).
MNIST [56] A classic dataset containing 70K 28×28 gray-scale images of handwritten digits.
Caltech-101 [32] The dataset comprises images of objects from 101 classes and a background clutter class, each labeled with

a single object. It contains about 40 to 800 images per class, totaling approximately 9K images.
SUN397 [102] The SUN397 or Scene UNderstanding (SUN) is a dataset for scene recognition consisting of 397 categories

with 109K images.
FGVC Aircraft [70] The dataset contains 10K images of aircraft, with 100 images for each of 102 different aircraft model

variants, most of which are airplanes.
Country-211 [81] It is a dataset released by OpenAI, designed to assess the geolocation capability of visual representations. It

filters the YFCC100M [94] dataset to find 211 countries that have at least 300 photos with GPS coordinates.
OpenAI built a balanced dataset with 211 categories, by sampling 200 photos for training and 100 photos
for testing, for each country.

Stanford Cars [52] This dataset consists of 196 classes of cars with a total of 16K images, taken from the rear. The data is
divided into almost a 50-50 train/test split with 8K training images and 8K testing images.

Table L. Introduction of datasets used in InternVL’s stage 1 and stage 2. In summary, we utilize a vast amount of image-text data for
pre-training and conduct comprehensive evaluation across a wide range of generic visual-linguistic tasks.
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dataset introduction
Testing Datasets for Image Classification.
Birdsnap [6] Birdsnap is a large bird dataset consisting of 49,829 images from 500 bird species with 47,386 images used

for training and 2,443 images used for testing. Due to broken links, we are only able to download 1,845 out
of the 2,443 testing images.

DTD [19] The Describable Textures Dataset (DTD) contains 5,640 texture images in the wild. They are annotated
with human-centric attributes inspired by the perceptual properties of textures.

Eurosat [42] This dataset is based on Sentinel-2 satellite images covering 13 spectral bands and consisting of 10 classes
with 27K labeled and geo-referenced samples.

FER2013 [35] This dataset includes around 30K RGB facial images, categorized into seven expressions: angry, disgust,
fear, happy, sad, surprise, and neutral.

Flowers-102 [76] It is consistent with 102 flower categories commonly occurring in the United Kingdom. Each class consists
of between 40 and 258 images.

Food-101 [9] The Food-101 dataset consists of 101 food categories with 750 training and 250 test images per category,
making a total of 101K images.

GTSRB [91] The German Traffic Sign Recognition Benchmark (GTSRB) contains 43 classes of traffic signs, split into
39,209 training images and 12,630 test images.

Pets [79] The Oxford-IIIT Pet Dataset is a 37-category pet dataset with roughly 200 images for each class created by
the Visual Geometry Group at Oxford.

Rendered SST2 [81] This dataset is used to evaluate the model’s capability on optical character recognition. It was generated by
rendering sentences in the Standford Sentiment Treebank v2 dataset.

Resisc45 [21] This is a dataset for remote sensing scene classification. It contains 31,500 RGB images divided into 45
scene classes, each class containing 700 images.

STL10 [76] The STL-10 dataset, inspired by CIFAR-10 [53], includes 10 classes with 500 training and 800 test color
images each, sized 96×96 pixels.

VOC2007 [30] The Pascal VOC 2007 dataset focuses on recognizing objects in realistic scenarios and contains 20 object
classes across 9,963 images with 24,640 labeled objects. The data has been divided into 50% for train-
ing/validation and 50% for testing. Following common practice, we conduct zero-shot image classification
by cropping images to isolate objects using bounding boxes.

Testing Datasets for Video Classification.
Kinetics 400 [12] A large-scale dataset containing around 400 human action classes with at least 400 video clips for each

class, sourced from YouTube.
Kinetics 600 [13] An expansion of Kinetics 400, this dataset includes 600 action classes and provides an increased diversity

in video representation.
Kinetics 700 [14] The latest in the series, Kinetics 700 offers an even broader range with 700 action categories, further chal-

lenging the robustness of retrieval models.
Testing Datasets for Image-Text Retrieval.
COCO [16] The COCO Caption dataset contains diverse images with detailed captions, widely used for image-text

retrieval and image captioning tasks.
COCO-CN [61] COCO-CN is a bilingual image description dataset enriching COCO with manually written Chinese sen-

tences and tags. The new dataset can be used for multiple tasks including image tagging, captioning, and
retrieval, all in a cross-lingual setting.

Flickr30K [80] This dataset comprises 31,000 images sourced from Flickr, each annotated with five captions, making it
suitable for image-text retrieval.

Flickr30K-CN [55] Flickr30K-CN offers Chinese captions for the images, enabling studies in cross-lingual and multi-modal
retrieval tasks.

XTD [1] A newly developed 1K multilingual test set, featuring COCO images annotated in various languages.
Testing Dataset for Video-Text Retrieval.
MSR-VTT [104] This is a large-scale dataset for open-domain video captioning and video-text retrieval, comprising 10,000

video clips across 20 categories. Each clip is annotated with 20 English sentences, totaling about 29,000
distinct words in all captions. The standard division of the dataset allocates 6,513 clips for training, 497 for
validation, and 2,990 for testing purposes.

Table M. Introduction of datasets used in InternVL’s stage 1 and stage 2. In summary, we utilize a vast amount of image-text data for
pre-training and conduct comprehensive evaluation across a wide range of generic visual-linguistic tasks.
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dataset introduction
Testing Datasets for Image Captioning.
COCO [16] We use the Karpathy test set for testing.
Flickr30K [80] We use the Karpathy test set for testing.
NoCaps [2] NoCaps stands out for testing models’ capabilities in open-ended caption generation, using images that go

beyond the training data’s domain. We report the performance on the NoCaps val set.
Testing Dataset for Semantic Segmentation.
ADE20K [115] ADE20K contains more than 20K scene-centric images exhaustively annotated with pixel-level objects and

object parts labels. There are a total of 150 semantic categories, which include stuffs like sky, road, grass,
and discrete objects like person, car, bed. We report the performance on the ADE20K val set.

Table N. Introduction of datasets used in InternVL’s stage 1 and stage 2. In summary, we utilize a vast amount of image-text data for
pre-training and conduct comprehensive evaluation across a wide range of generic visual-linguistic tasks.

dataset introduction
Training Data for SFT.
COCO Caption [16] It contains over 0.5 million captions describing over 110K images. Following common practice, we use

the Karpathy training set for training. We transform it into a dialogue dataset using the response formatting
prompt: “Provide a one-sentence caption for the provided image.”

TextCaps [89] TextCaps contains 145K captions for 28K images. It challenges a model to recognize text, relate it to its
visual context, and decide what part of the text to copy or paraphrase. OCR tokens are used during training.
We transform it into a dialogue dataset using the response formatting prompt: “Provide a one-sentence
caption for the provided image.”

VQAv2 [37] VQAv2, the second version of the VQA dataset, features open-ended questions related to images. Answer-
ing these questions demands a grasp of vision, language, and common sense. We convert it into a dialogue
dataset using the prompt: “Answer the question using a single word or phrase.”

OKVQA [72] A dataset with over 14K questions requiring external knowledge for answers, focusing on knowledge-based
visual question answering. We transform it into a dialogue dataset using the response formatting prompt:
“Answer the question using a single word or phrase.”

A-OKVQA [86] An augmented successor of OKVQA [72] and contains 25K questions requiring a broad base of common-
sense and world knowledge to answer. We transform it into a dialogue dataset using the response formatting
prompt: “Answer with the option’s letter from the given choices directly.”

IconQA [69] A dataset with 107K questions across three sub-tasks, focusing on abstract diagram recognition and com-
prehensive visual reasoning. We convert it into a dialogue dataset using these prompts: “Answer with the
option’s letter from the given choices directly.” and “Answer the question using a single word or phrase.”

AI2D [51] AI2D features over 5K grade school science diagrams with rich annotations and 15K multiple-choice ques-
tions for diagram understanding research. We convert it into a dialogue dataset using the prompt: “Please
answer the question based on the options mentioned before.”

GQA [46] GQA is a large-scale dataset with more than 110K images and 22 million questions, combining real images
with balanced question-answer pairs for visual reasoning. We transform it into a dialogue dataset using the
prompt: “Answer the question using a single word or phrase.”

OCR-VQA [75] The OCR-VQA dataset contains 207,572 images of book covers and more than 1 million question-answer
pairs about these images. We convert it into a dialogue dataset using the response formatting prompt:
“Answer the question using a single word or phrase.”

ChartQA [73] ChartQA is a dataset for question answering about charts, focusing on visual and logical reasoning. It com-
prises 9.6K human-written questions and 23.1K questions generated from human-written chart summaries.
We convert it using the prompt: “Answer the question using a single word or phrase.”

DocVQA [20] The DocVQA dataset consists of 50,000 questions defined on over 12,000 document images. We convert it
into a dialogue dataset using the prompt: “Answer the question using a single word or phrase.”

ST-VQA [8] The ST-VQA dataset contains a total of 31,791 questions over 23,038 images. The training set alone
consists of 26,308 questions based on 19,027 images. We convert it into a dialogue dataset using the
response formatting prompt: “Answer the question using a single word or phrase.”

Table O. Introduction of datasets used in InternVL’s stage 3. We collect a wide range of high-quality instruction data. For non-dialogue
datasets, we follow the response formatting prompts described in [66] for conversion. Note that only the training set is used for training.
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dataset introduction
Training Data for SFT.
EST-VQA [100] The EST-VQA dataset provides questions, images, and answers, but also a bounding box for each question

that indicates the area of the image that informs the answer. We convert it into a dialogue dataset using the
response formatting prompt: “Answer the question using a single word or phrase.”

InfoVQA [74] This dataset includes a diverse collection of infographics with natural language questions and answers. It
focuses on reasoning over document layout, textual content, graphical elements, and data visualizations. We
convert it into a dialogue dataset using the prompt: “Answer the question using a single word or phrase.”

LLaVAR [112] The LLaVAR dataset advances visual instruction tuning for Large Language Models by focusing on text-
rich images. It incorporates 422K images processed with OCR and 16K GPT-4 generated conversations,
enhancing text-based VQA performance and human interaction capabilities in diverse scenarios. Note that,
we only use the 20K high-quality data for fine-tuning of LLaVAR.

RefCOCO [71, 108] A mixed dataset of RefCOCO [108], RefCOCO+[108], and RefCOCO-g [71]. We convert it into a dialogue
dataset following LLaVA-1.5 [66].

Toloka [95] The TolokaVQA dataset comprises images with associated textual questions, each marked with a bounding
box indicating the visual answer. It’s sourced from a licensed subset of the COCO dataset and labeled on the
Toloka platform. We convert it into a dialogue dataset following LLaVA-1.5 [66].

LLaVA-150K [67] This is a set of GPT-generated multi-modal instruction-following data, constructed for visual instruction
tuning and building large multi-modal models towards GPT-4 vision/language capability. It includes 158K
unique language-image instruction-following samples.

SVIT [113] This dataset includes 3.2 million visual instruction tuning data, with 1.6M conversation QA pairs, 1.6M
complex reasoning QA pairs, and 106K detailed image descriptions. It is designed to improve multi-modal
performance in visual perception, reasoning, and planning. For this dataset, we merge the QA pairs from the
same training image into a single conversation.

VisDial [26] A dataset based on the COCO images, featuring dialogues created by two Amazon Mechanical Turk workers.
One plays the ‘questioner’, seeing only an image’s text description, and the other, the ‘answerer’, sees the
image. They engage in a 10-round Q&A session about the image.

LRV-Instruction [65] The LRV-Instruction dataset is designed to combat hallucination in large multi-modal models. It comprises
120K GPT-4-generated visual instructions for 16 vision-and-language tasks, including both positive and neg-
ative instructions for robust tuning. Negative instructions focus on Nonexistent and Existent Element Manip-
ulation. This dataset helps improve accuracy and consistency in multi-modal tasks.

LLaVA-Mix-665K [66] LLaVA-Mix-665K is an instruction-following dataset mixed from 10 academically oriented datasets.
Testing Dataset for SFT (Image Captioning).
COCO [16] Karpathy test set is used for testing. The prompt is: “Provide a one-sentence caption for the provided image.”
Flickr30K [80] Karpathy test set is used for testing. The prompt is: “Provide a one-sentence caption for the provided image.”
NoCaps [2] NoCaps val set is used for testing. The prompt is: “Provide a one-sentence caption for the provided image.”
Testing Dataset for SFT (Visual Question Answering).
VQAv2 [37] VQAv2 test-dev set is used for testing. The prompt is: “Answer the question using a single word or phrase.”
GQA [46] GQA test-balanced set is used. The prompt is: “Answer the question using a single word or phrase.”
VizWiz [39] VizWiz test-dev set is used for testing. The prompt is: “When the provided information is insufficient,

respond with ‘Unanswerable’. Answer the question using a single word or phrase.”
TextVQA [90] TextVQA val set is used for testing. The prompt is: “Answer the question using a single word or phrase.”
Testing Dataset for SFT (Multi-Modal Dialogue).
MME [33] MME is a comprehensive evaluation benchmark for multi-modal large language models. It measures both

perception and cognition abilities on a total of 14 subtasks, including existence, count, position, color, poster,
celebrity, scene, landmark, artwork, OCR, commonsense reasoning, numerical calculation, text translation,
and code reasoning. The prompt for this dataset is: “Answer the question using a single word or phrase.”

POPE [62] POPE is a popular dataset used to evaluate object hallucination. The response formatting prompt used for
this dataset is: “Answer the question using a single word or phrase.”

Table P. Introduction of datasets used in InternVL’s stage 3. We collect a wide range of high-quality instruction data. For non-dialogue
datasets, we follow the response formatting prompts described in [66] for conversion. Note that only the training set is used for training.
We evaluate our InternVL-Chat models on three tasks, including image captioning, VQA, and multi-modal dialogue. For these datasets,
we employ the same response formatting prompts as for LLaVA-1.5 [66].
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[56] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998. 2, 6

[57] Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,
Jingkang Yang, and Ziwei Liu. Otter: A multi-modal
model with in-context instruction tuning. arXiv preprint
arXiv:2305.03726, 2023. 3

[58] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for uni-
fied vision-language understanding and generation. In
ICML, pages 12888–12900, 2022. 2, 6

[59] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. In
ICML, pages 19730–19742. PMLR, 2023. 3, 4

[60] Kunchang Li, Yali Wang, Yizhuo Li, Yi Wang, Yinan He,
Limin Wang, and Yu Qiao. Unmasked teacher: Towards
training-efficient video foundation models. In ICCV, pages
19948–19960, 2023. 2

11

https://bard.google.com/
https://doi.org/10.5281/zenodo.5143773
https://doi.org/10.5281/zenodo.5143773
https://github.com/LAION-AI/CLIP_benchmark
https://github.com/LAION-AI/CLIP_benchmark


[61] Xirong Li, Chaoxi Xu, Xiaoxu Wang, Weiyu Lan, Zhengx-
iong Jia, Gang Yang, and Jieping Xu. Coco-cn for cross-
lingual image tagging, captioning, and retrieval. TMM, 21
(9):2347–2360, 2019. 7

[62] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin
Zhao, and Ji-Rong Wen. Evaluating object hallucination in
large vision-language models. In EMNLP, pages 292–305,
2023. 9

[63] Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feicht-
enhofer, and Kaiming He. Scaling language-image pre-
training via masking. In CVPR, pages 23390–23400, 2023.
3

[64] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in
context. In ECCV, pages 740–755, 2014. 4

[65] Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser
Yacoob, and Lijuan Wang. Aligning large multi-modal
model with robust instruction tuning. arXiv preprint
arXiv:2306.14565, 2023. 9

[66] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee.
Improved baselines with visual instruction tuning. arXiv
preprint arXiv:2310.03744, 2023. 3, 4, 5, 8, 9

[67] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. Visual instruction tuning. NeurIPS, 36, 2023. 3, 4, 9

[68] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 3,
4

[69] Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao,
Wei Zhang, Zhou Yu, Xiaodan Liang, and Song-Chun Zhu.
Iconqa: A new benchmark for abstract diagram under-
standing and visual language reasoning. arXiv preprint
arXiv:2110.13214, 2021. 8

[70] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained visual classi-
fication of aircraft. arXiv preprint arXiv:1306.5151, 2013.
2, 6

[71] Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L Yuille, and Kevin Murphy. Generation
and comprehension of unambiguous object descriptions. In
CVPR, pages 11–20, 2016. 9

[72] Kenneth Marino, Mohammad Rastegari, Ali Farhadi, and
Roozbeh Mottaghi. Ok-vqa: A visual question answering
benchmark requiring external knowledge. In CVPR, pages
3195–3204, 2019. 8

[73] Ahmed Masry, Xuan Long Do, Jia Qing Tan, Shafiq Joty,
and Enamul Hoque. Chartqa: A benchmark for question
answering about charts with visual and logical reasoning.
In ACL, pages 2263–2279, 2022. 8

[74] Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis
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