LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry

Supplementary Material

A. Implementation Details
A.1.LEAP

Training. We implement our approach in Python 3.10
with Pytorch 1.12. We train our model following the
setting of CoTracker [18] on the TAP-Vid-Kubric [9]
training set, which contains 11,000 synthetic sequences
with 24 frames from MOVi-F dataset. Additionally, we
extract the dynamic track label from the instance dynamic
label provided by the Kubric simulator to supervise the
dynamic track estimation. Notably, the MOVi-F dataset
contains a limited number of scenes involving falling
objects, accompanied by simple, linear camera motion at
a constant velocity. In contrast, the TartanAir training set,
used by TartanVO [40], DytanVO [28], and DPVO [33],
contains a wider range of environments and features more
complex camera motions, along with a greater number of
images. The image resolution of the synthetic sequences is
512 x 512. During training, the input images are cropped
to a resolution of 384 x 512, and the feature map stride
is 4. We adopt the AdamW optimizer with the learning
rate of 3¢ —4 and linear warmup cosine annealing scheduler.

Model Architectures. For the image feature extractor, we
employ the same Convolutional Neural Network (CNN) as
used in PIPs [16]. It begins with a 7x7 convolution layer
with a stride of 2, followed by an instance normalization
layer and ReLU activation. The network then comprises
several 3x3 kernel-sized residual blocks, each designed to
process image features at different scales. The outputs of
these layers are resized to a consistent scale using bilin-
ear interpolation and then stacked. These stacked features
are subsequently processed through 3x3 and 1x1 convolu-
tion layers. Regarding the refiner, we have explored inte-
grating anchor-based inter-track attention with the MLP-
based refiner from [16] and the transformer-based refiner
from [18]. We find that both models achieve comparable
point tracking accuracy given sufficient training time. How-
ever, the transformer-based network, which possesses five
times more parameters, demonstrates faster convergence
with fewer epochs of training. Consequently, we have cho-
sen the transformer-based refiner for its training efficiency.

A.2. LEAP-VO

Keypoint Extration and Tracking. During the tracking
process, we have introduced an additional hyperparameter,
Skr, to control the frequency of keypoint extraction,
i.e., keypoints are extracted every Sk frame. The key-
points extracted within the most recent Spp are tracked

bi-directionally within the LEAP window. A smaller
Sk F results in more frequent keypoint extraction, leading
to a denser video representation and better capturing of
motion patterns. However, extracting more keypoints also
increases computational cost during the tracking front-end,
especially due to the inter-track attention mechanism that
exchanges information between every pair of tracks. We
use Sk = 2 and Spp = 12 to balance performance
and efficiency during the experiment. For the number of
keypoints, we set N = 64 for both Replica and TartanAir-
Shibuya, and N = 100 for MPI-Sintel.

Local Bundle Adjustment. In developing LEAP-VO, we
build our system based on the local bundle adjustment (BA)
implementation of DPVO [33]. The bundle adjustment
window size, denoted as Sg4, is set to 15. This means
that at each step, local BA optimizes the camera poses
for the most recent 15 frames. Following local BA, we
also incorporate the map outlier filtering process. This
process filters out points with large projection errors,
specifically those where the distance between the projected
correspondences and LEAP correspondences is substantial.
Implementing this step helps to enhance the accuracy and
robustness of the entire system during incremental tracking.

Initialization. We initiate the visual odometry system after
collecting initial frames, followed by 12 bundle adjustment
(BA) steps to determine the initial camera pose and 3D
scene points. As discussed in Section 3.4, keypoints are
parameterized using their 2D-pixel coordinates from the
extracted frame and a scalar depth value. Initially, we
assign depth values by sampling from a uniform distri-
bution within the range of [0,1). After VO initialization,
depth values are initialized using the median depth from
the past three frames [33]. An additional advantage of
our approach, which utilizes continuous feature tracking
within a sliding window, is the ability to reuse estimated
point locations from the previous window for better
initialization in the current one. Let X;_,; denote the
estimated point position in frame I;, associated with its
source frame I;,. For all point tracking targets in the
current local window I;_g, .41+, it is observed that for
alli,j € [t — Spp + 1,t — 1], estimations have already
been made by the previous local window I;_g, ,.t—1.
Therefore, instead of initializing the point trajectory X°
by duplicating the query position x4, we can leverage the
previous estimation for a better initialization.

Hyperparameters Setting. In the LEAP-VO system, the

Method MPI Sintel
ATE RPE trans (m) RPE rot (deg)
LEAP-VO (Gaussian) 0.053 0.064 1.277
LEAP-VO (Cauchy) 0.037 0.055 1.263

Table B.1. Comparison of temporal distribution for cam-
era tracking performance. Our Cauchy distribution formulation
achieves better results compared to the Gaussian distribution.

TAP-Vid Davis (first)
AJ < 6% OA

avg

LEAP (Gaussian) 50.855 66.032 83.177
LEAP (Cauchy) 56.889 73.301 85.005

Method

Table B.2. Comparison of temporal distribution for point
tracking performance. Our Cauchy distribution formulation
achieves better results compared to the Gaussian distribution.

track filtering parameters (7y, Y4, V2.) play a pivotal role in
determining the quality of point trajectories for bundle ad-
justment. Specifically, v, filters occluded points, v, identi-
fies dynamic points, and 7y, manages points with high un-
certainty. For those key hyperparameters, we perform in-
dividual coarse tuning. We tune (7, V4, Vw) using three
thresholds {0.3,0.6,0.9}, and then adjust them by =£0.1.
Once the LEAP network is trained, the majority of hyper-
parameters can be set and remain fixed for practical usage.

B. Additional Ablation Study

Temporal Probabilistic Distribution. In our Long-term
Effective Any Point Tracking (LEAP) module, we employ a
multivariate Cauchy distribution to model the temporal rela-
tionships among points from the same track. This approach
is compared with the widely used multivariate Gaussian dis-
tribution. For this comparison, we train the LEAP network
using the negative log-likelihood (NLL) loss with respect to
the Gaussian distribution. The results of camera tracking
using both LEAP (Cauchy) and LEAP (Gaussian) are pre-
sented in Table B.1. It is evident that LEAP-VO (Cauchy),
with the LEAP (Cauchy) front-end, outperforms LEAP-VO
(Gaussian) in all metrics. To further assess the differences,
we evaluate the point tracking accuracy of both models on
the TAP-Vid Davis First benchmark [9]. We use the stan-
dard metrics from [9], including the average Jaccard score
(AJ), the average percentage of correct keypoints (< d7,,,),
and occlusion accuracy (OA), all calculated across various
thresholds. The results, as shown in Table B.2, indicate that
LEAP (Cauchy) surpasses LEAP (Gaussian) in point track-
ing accuracy, potentially leading to improved camera track-
ing performance in VO. We hypothesize that this improve-
ment could be due to the L2 norm error term in the Gaussian
NLL loss being less robust to outliers during training.

Keypoints N=16 N=64 N=144 N=256
ATE (m) 0.2449 0.0290 0.0312 0.0261

Table B.3. Comparison of query numbers on TartanAir-
Shibuya. We use N = 64 to balance between accuracy and effi-
ciency.

Influence of query point numbers. We compare the in-
fluence of different numbers of query point on the final VO
performance, as shown in Table B.3. The query number can
be tuned according to practical requirements for efficiency
and accuracy.

#Frames Spp=8 Spp=12 Spp =16

Time (ms) 224.46 380.56 526.37

Table B.4. Efficiency of LEAP. For a larger window, LEAP takes
a longer time to track the query points.

Efficiency of LEAP. We evaluate the efficiency of our
LEAP algorithm by tracking 256 points from the first frame
of the window, using a single NVIDIA RTX A4000 GPU
(16GB). The results are displayed in Table B.4. We set
Srp = 12 to balance between track length and track relia-
bility. Increasing the feature map stride from 4 to 8 halves
the inference time, and switching from global inter-track at-
tention to local attention could further reduce it.

C. More Visualization Results

Qualitative Results for Visual Odometry. We visualize
the qualitative results for camera tracking, including
dynamic track estimation, temporal probabilistic model-
ing, and comparisons of VO performance. Figure D.1
displays results from sample sequences of MPI-Sintel [4],
TartanAir-Shibuya [26], and Replica [29]. In dynamic envi-
ronments, methods that explicitly handle dynamic objects,
such as DytanVO and ours, demonstrate superior perfor-
mance compared to TartanVO, which does not address
dynamic elements. DPVO, through implicitly learning
the uncertainty from point correspondences, manages to
handle dynamic scenes to some extent. However, it is not
as effective as DytanVO and our method. This underscores
the effectiveness of explicitly modeling dynamic elements
in the formulation. Our method further surpasses DytanVO,
showcasing the advantages of long-term point tracking over
the two-view method.

Dynamic Track Estimation. @ We present additional
visualizations of the dynamic track estimation results on
the DAVIS dataset [19], as illustrated in Figure D.2. These
visualizations demonstrate that our LEAP module is adept
at handling dynamic scenes across a variety of scenarios.

Temporal Uncertainty Estimation. We present additional
visualizations of the uncertainty estimation results on the

MPI-Sintel [4] and Replica [29] datasets, as shown in Fig-
ure D.3 and Figure D.4, respectively. Guided by the NLL
loss, our model tends to assign high uncertainty to areas
with low texture and dynamic objects.

D. Discussion and Future Work

Learning-based Anchor Selections. We have incor-
porated anchor-based methods into the LEAP pipeline
to select points that capture motion patterns effectively.
Our current method, which chooses anchors based on
distributed image gradient sampling, outperforms uniform
or random strategies. This technique selects easier-to-track
anchors from high-gradient areas, ensuring comprehensive
sequence coverage. However, it remains unclear whether
this anchor selection strategy is optimal for the specific
LEAP front-end. Exploring a learning-based anchor
selection, integrated end-to-end with the point-tracking
framework, could be beneficial. The main challenge lies
in developing effective loss functions or self-supervised
objectives for learning the anchor selection process.

Joint Refinement with Camera Tracking. In our visual
odometry (VO) system, we distinctively handle the refine-
ment of point trajectories and the refinement of camera pose
and 3D map points as separate components. The refinement
of point trajectories is managed using the refiner module in
LEAP, which predicts iterative updates for point state vari-
ables including position, features, and other distribution pa-
rameters. For refining camera pose and 3D map points, we
use a sliding-window local bundle adjustment module that
leverages the Gauss-Newton method for updates. A promis-
ing future direction would be to merge point trajectory re-
finement with camera pose optimization into a unified re-
finement system.

LEAP Front-end (static) LEAP Front-end (static)

VO Performance (xyz view) VO Performance (xyz view)

LEAP Front-end (dynamic & uncertain)

static
o dynamic
uncertain

static

o dynamic
uncertain

LEAP Front-end (static)

VO Performance (xyz view) VO Performance (xyz view)

static
o dynami
uncertain

VO Performance (xyz view) VO Performance (xyz view)

LEAP Front-end (dynamic & uncertain)

static
o dynamic
uncertain

LEAP Front-end (static)
T

VO Performance (xyz view) VO Performance (xyz view)

LEAP Front-end (dynamic & uncertain)

static
o dynamic
uncertain

Figure D.1. Qualitative results for Visual Odometry on MPI-Sintel [4], TartanAir-Shibuya [26], and Replica [29]. Upper left: image
sample with static (green) point tracking. Lower left: image sample with dynamic (red) and uncertain () point tracking. Right:
comparison with the state-of-the-art VO methods.

image with

sample from image sequence,

ht:

DAVIS [19]. From left to rig

imation on

track esti
all point trajectories, all point trajectories, and estimated dynamic point trajectories.

1C

f dynam

ization o

Figure D.2. Visual

Figure D.3. Visualization of point-wise uncertainty measurements on MPI-Sintel [4]. Keypoints with the lowest 20% (left) and highest
20% (right) uncertainty are shown in green and yellow, respectively.

Figure D.4. Visualization of point-wise uncertainty measurements on Replica [29]. Keypoints with the lowest 20% (left) and highest
20% (right) uncertainty are shown in green and yellow, respectively.

